【題目】已知:如圖,直線AB、CD相交于點(diǎn)O,∠COE=90°,∠BOD∶∠BOC=1∶5,過點(diǎn)O作OF⊥AB,則∠EOF的度數(shù)為__.
【答案】30°或150°
【解析】
作出圖形,分OF、OE在直線AB的同側(cè)或異側(cè)兩種情況討論.根據(jù)平角的定義可求∠BOD,根據(jù)余角的定義可求∠BOE,根據(jù)余角的性質(zhì)和角的和差關(guān)系可求∠EOF或∠EOF'的度數(shù)即可.
∵∠BOD:∠BOC=1:5,∠BOD+∠BOC=180°,
∴∠BOD=30°.
∵∠COE=90°,
∴∠DOE=90°,
∴∠BOE=90°-30°=60°.
①若OF、OE在直線AB的同側(cè).
∵FO⊥AB,
∴∠FOB=90°,
∴∠EOF=∠BOD=30°.
②若OF'、OE在直線AB的同側(cè).
∵F'O⊥AB,
∴∠F'OB=90°,
∴∠EOF'=∠EOB+∠F'OB=60°+90°=150°.
綜上所述:∠EOF的度數(shù)為30°或150°.
故答案為:30°或150°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)的圖象經(jīng)過點(diǎn)A,且點(diǎn)A到x軸的距離是4.
(1) 求點(diǎn)A的坐標(biāo);
(2) 點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)是x軸正半軸上一點(diǎn),當(dāng)時(shí),求直線AB的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年春節(jié)是市民購買葡萄酒的高峰期,某商場分兩批購進(jìn)同一種葡萄酒,第一批所用資金是8000元,第二批所用資金是10000元.第二批葡萄酒每瓶比第一批葡萄酒每瓶貴90元,結(jié)果購買數(shù)量比第一批少20%.
(1)求該商場兩次共購進(jìn)多少瓶葡萄酒.
(2)第一批葡萄酒的售價(jià)是每瓶200元,很快售完,但因?yàn)檫M(jìn)價(jià)的提高第二批葡萄酒的售價(jià)在第一批基礎(chǔ)上提高了2a%,實(shí)際售賣對(duì)比第一批少賣a%,結(jié)果兩次銷售共賺得利潤3200元,求a(其中a>25).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C三點(diǎn)在同一直線上,AB=16cm,BC=10cm,M、N分別是AB、BC的中點(diǎn),則MN等于__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E在邊BC上,且CE=2BE.連接BD、DE、AE,且AE交BD于F,OG為△BDE的中位線.下列結(jié)論:①OG⊥CD;②AB=5OG;③;④BF=OF;⑤,其中正確結(jié)論的個(gè)數(shù)是( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車都從A地出發(fā),在路程為360千米的同一道路上駛向B地.甲車先出發(fā)勻速駛向B地.10分鐘后乙車出發(fā),乙車勻速行駛3小時(shí)后在途中的配貨站裝貨耗時(shí)20分鐘.由于滿載貨物,乙車速度較之前減少了40千米/時(shí).乙車在整個(gè)途中共耗時(shí)小時(shí),結(jié)果與甲車同時(shí)到達(dá)B地.
(1)甲車的速度為 千米/時(shí);
(2)求乙車裝貨后行駛的速度;
(3)乙車出發(fā) 小時(shí)與甲車相距10千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究問題:
(1)方法感悟:
如圖①,在正方形ABCD中,點(diǎn)E,F分別為DC,BC邊上的點(diǎn),且滿足∠BAF=45°,連接EF,求證DE+BF=EF.感悟解題方法,并完成下列填空:將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,此時(shí)AB與AD重合,由旋轉(zhuǎn)可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴ ∠ABG+∠ABF=90°+90°=180°,因此,點(diǎn)G,B,F在同一條直線上.
∵ ∠EAF=45°∴ ∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵ ∠1=∠2,∠1+∠3=45°.
即∠GAF=∠________.
又AG=AE,AF=AE
∴ △GAF≌△________.
∴ _________=EF,故DE+BF=EF.
(2)方法遷移:
如圖②,將Rt△ABC沿斜邊翻折得到△ADC,點(diǎn)E,F分別為DC,BC邊上的點(diǎn),且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線與雙曲線相交于點(diǎn).
求雙曲線的表達(dá)式;
過動(dòng)點(diǎn)且垂直于x軸的直線與直線及雙曲線的交點(diǎn)分別為B和C,當(dāng)點(diǎn)B位于點(diǎn)C下方時(shí),求出n的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com