9、如圖所示,∠ADB=∠ADC,BD=CD.
(1)求證:△ABD≌△ACD;
(2)設E是AD延長線上的動點,當點E移動到什么位置時,四邊形ACEB為菱形?說明你的理由.
分析:(1)直接利用SAS判定△ABD≌△ACD;
(2)由(1)可知AB=AC,BD=DC,利用菱形的判定定理(四條邊都相等的四邊形是菱形)可知道當AB=BD時,AB=AC=BD=DC,四邊形ACEB為菱形.
解答:(1)證明:∵∠ADB=∠ADC,BD=CD,AD=AD,
∴△ABD≌△ACD(SAS).

(2)根據(jù)菱形的性質可知,當點E移動到使AB=BD的位置時,四邊形ACEB為菱形.
理由:由(1)可知,AB=AC,BD=DC,
當AB=BD時,AB=AC=BD=DC,
所以四邊形ACEB為菱形.
點評:本題考查三角形全等的性質和判定方法,判定兩個三角形全等的一般方法有:ASA、SSS、SAS、SSA、HL.判定兩個三角形全等,先根據(jù)已知條件或求證的結論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

21、如圖所示,∠ADB=∠ADC,BD=CD.
(1)求證:△ABD≌△ACD;
(2)若連接BC,交AD于F點.設E是AD延長線上的動點,當點E移動到什么位置時,四邊形ACEB為菱形?(不必說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,∠ADB=∠ACB=90°,AC=BD,AC、BD相交于點O,給出下列五個結論:①AD=BC;②∠DBC=∠CAD;③AO=BO;④AB∥CD;⑤DO=CO.其中正確的有
①②③④⑤
①②③④⑤
(填序號).

查看答案和解析>>

科目:初中數(shù)學 來源:2011年福建省泉州市中考數(shù)學模擬試卷(三)(解析版) 題型:解答題

如圖所示,∠ADB=∠ADC,BD=CD.
(1)求證:△ABD≌△ACD;
(2)若連接BC,交AD于F點.設E是AD延長線上的動點,當點E移動到什么位置時,四邊形ACEB為菱形?(不必說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《四邊形》(07)(解析版) 題型:解答題

(2007•柳州)如圖所示,∠ADB=∠ADC,BD=CD.
(1)求證:△ABD≌△ACD;
(2)設E是AD延長線上的動點,當點E移動到什么位置時,四邊形ACEB為菱形?說明你的理由.

查看答案和解析>>

同步練習冊答案