如圖,當AC=________時,△ACB∽△DCE;當AC=________時,△ACB∽△ECD.

25    81
分析:根據(jù)對頂角相等得到∠ACB=∠ECD,再根據(jù)兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似得到當=時,△ACB∽△DCE;當=時,△ACB∽△ECD,然后把BC=45,EC=36,DC=20分別代入計算即可.
解答:∵∠ACB=∠ECD,
∴當=時,△ACB∽△DCE,
=,解得AC=25;
=時,△ACB∽△ECD,
=,解得AC=81.
故答案為25,81.
點評:本題考查了相似三角形的判定:兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞點B順時針旋轉(zhuǎn)角α(0<α<120°),得△A1BC1,交AC于點E,AC分別交A1C1、BC于D、F兩點.

(1)如圖①,觀察并猜想,在旋轉(zhuǎn)過程中,線段EA1與FC有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
(2)如圖②,當α=30°時,試判斷四邊形BC1DA的形狀,并說明理由;
(3)在(2)的情況下,求ED的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•路南區(qū)一模)如圖①,在△ABC中,AB=BC,∠ABC=120°,點P是線段AC上的動點(點P與點A、點C不重合),連接BP.將△ABP繞點P按順時針方向旋轉(zhuǎn)α角(0°<α<180°),得到△A1B1P,連接AA1,直線AA1分別交直線PB、直線BB1于點E,F(xiàn).
(1)如圖①,當0°<α<60°時,在α角變化過程中,△APA1與△BPB1始終存在
相似
相似
關(guān)系(填“相似”或“全等”),同時可得∠A1AP
=
=
∠B1BP(填“=”或“<”“>”關(guān)系).請說明△BEF與△AEP之間具有相似關(guān)系;
(2)如圖②,設(shè)∠ABP=β,當120°<α<180°時,在α角變化過程中,是否存在△BEF與△AEP全等?若存在,求出α與β之間的數(shù)量關(guān)系;若不存在,請說明理由;
(3)如圖③,當α=120°時,點E、F與點B重合.已知AB=4,設(shè)AP=x,S=△A1BB1面積,求S關(guān)于x的函數(shù)關(guān)系式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,當AC=
25
25
時,△ACB∽△DCE;當AC=
81
81
時,△ACB∽△ECD.

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆北京四中九年級上學期期中考試數(shù)學試卷(帶解析) 題型:解答題

在△ABC中,點D在線段AC上,點E在BC上,且DE∥AB將△CDE繞點C按順時針方向旋轉(zhuǎn)得到△(使<180°),連接、,設(shè)直線與AC交于點O.

(1)如圖①,當AC=BC時,:的值為______;
(2)如圖②,當AC=5,BC=4時,求:的值;
(3)在(2)的條件下,若∠ACB=60°,且E為BC的中點,求△OAB面積的最小值.

查看答案和解析>>

同步練習冊答案