【題目】在□ABCD中,已知AB、BC、CD三條邊長度分別為(x + 3)cm、(x - 4)cm、16 cm,則AD = ____________。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為6的正方形,點(diǎn)E在邊AB上,BE=4,過點(diǎn)E作EF∥BC,分別交BD、CD于G、F兩點(diǎn).若M、N分別是DG、CE的中點(diǎn),則MN的長為 ( )
A.3
B.
C.
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形 中, , ,點(diǎn) 從點(diǎn) 出發(fā),以 的速度沿 向點(diǎn) 運(yùn)動,設(shè)點(diǎn) 的運(yùn)動時間為 秒:
(1) .(用 的代數(shù)式表示)
(2) 當(dāng) 為何值時,
(3)當(dāng)點(diǎn) 從點(diǎn) 開始運(yùn)動,同時,點(diǎn) 從點(diǎn) 出發(fā),以 v 的速度沿 向點(diǎn) 運(yùn)動,是否存在這樣的v 值,使得 全等?若存在,請求出 v的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC、BD相交于點(diǎn)O,過點(diǎn)D作DE∥AC且DE= AC,連接AE交OD于點(diǎn)F,連接CE、OE.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長為2,∠ABC=60°,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A(1-,1+)在雙曲線(x<0)上
(1) 求k的值
(2) 在y軸上取點(diǎn)B(0,1),問雙曲線上是否存在點(diǎn)D,使得以AB、AD為斜邊的平行四邊形ACBD的頂點(diǎn)C在x軸的負(fù)半軸上?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等邊△ABC中,AO是BC邊上的高,D為AO上一點(diǎn),以CD為一邊,在CD下方作等邊△CDE,連接BE.
(1)求證:△ACD≌△BCE
(2)過點(diǎn)C作CH⊥BE,交BE的延長線于H,若BC=8,求CH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD為菱形,點(diǎn)P為對角線BD上的一個動點(diǎn).
(1)如圖1,連接AP并延長交BC的延長線于點(diǎn)E,連接 PC,求證:∠AEB=∠PCD.
(2)如圖1,當(dāng)PA=PD且PC⊥BE時,求∠ABC的度數(shù).
(3)連接AP并延長交射線BC于點(diǎn)E,連接 PC,若∠ABC=90°且ΔPCE是等腰三角形,求得∠PEC的度數(shù) (第(3)問 直接寫出結(jié)果,不寫過程)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com