【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點,連接AE、BE,BE⊥AE,延長AE交BC的延長線于點F.
求證:
(1)AD=FC;
(2)AB=BC+AD

【答案】
(1)證明:∵AD∥BC,
ADC=ECF,
∵E是CD的中點,
∴DE=EC,
ADE和FCE中,
,
ADEFCE(ASA),
∴AD=FC.

(2)證明:∵ADEFCE,
∴AE=EF,AD=CF,
∴BE是線段AF的垂直平分線,
∴AB=BF=BC+CF,
∵AD=CF,
∴AB=BC+AD.

【解析】(1)根據(jù)AD∥BC可知ADC=ECF,再根據(jù)E是CD的中點可證出ADEFCE,進而根據(jù)全等三角形的性質即可解答;(2)根據(jù)線段垂直平分線的性質判斷出AB=BF即可.
【考點精析】解答此題的關鍵在于理解線段垂直平分線的性質的相關知識,掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=﹣ x+2和y=2x﹣3的圖象分別交y軸與A、B兩點,兩個一次函數(shù)的圖象相交于點P.

(1)求△PAB的面積;
(2)求證:∠APB=90°;
(3)若在一次函數(shù)y=2x﹣3的圖象上有一點N,且橫坐標為x,連結NA,請直接寫出△NAP的面積關于x的函數(shù)關系式,并寫出相應x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著車輛的增加,交通違規(guī)的現(xiàn)象越來越嚴重,交警對人民路某雷達測速區(qū)檢測到的一組汽車的時速數(shù)據(jù)進行整理(速度在30﹣40含起點值30,不含終點值40),得到其頻數(shù)及頻率如表:

(1)表中a、b、c、d分別為:a=; b=; c=; d=.
(2)補全頻數(shù)分布直方圖;
(3)如果某天該路段約有1500輛通過,汽車時速不低于60千米即為違章,通過該統(tǒng)計數(shù)據(jù)估計當天違章車輛約有多少輛?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一塊邊長為4的正方形ABCD,將一塊足夠大的直角三角板如圖放置, CB延長線與直角邊交于點E.則四邊形AECF的面積是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=BC=CD=AD,∠BAD=∠B=∠C=∠D=90°,點E、F分別在正方形ABCD的邊DC、BC上,AG⊥EF且 AG=AB,垂足為G,則:
(1)△ABF與△ AGF全等嗎?說明理由;
(2)求∠EAF的度數(shù);
(3)若AG=4,△AEF的面積是6,求△CEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D是等邊△ABCBC邊上一點,過點D分別作DE∥AB,DF∥AC,交AC,ABEF,連接BE,CF,分別交DFDE于點N,M,連接MN.試判斷△DMN的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用甲、乙兩種原料配制某種飲料,這兩種原料的維生素C含量及購買兩種原料的價格如表:

原料

維生素C的含量/(單位/kg)

600

100

原料價格/(元/kg)

8

4

現(xiàn)配制這種飲料10千克,要求至少含有4200單位的維生素C,且購買甲、乙兩種原料的費用不超過72元,求所需甲種原料的質量應滿足的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分解因式:a2﹣2a+1=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人在一條長400米的直線跑道上同起點、同終點、同方向勻速跑步,先到終點的人原地休息.已知甲先出發(fā)3秒,在跑步過程中,甲、乙兩人的距離y(米)與乙出發(fā)的時間t(秒)之間的關系如圖所示,則下列結論正確的個數(shù)有( )

①乙的速度是4米/秒;
②離開起點后,甲、乙兩人第一次相遇時,距離起點12米;
③甲從起點到終點共用時83秒;
④乙到達終點時,甲、乙兩人相距68米;
⑤乙離開起點12秒后,甲乙第一次相遇.
A.4個
B.3個’
C.2個
D.1個

查看答案和解析>>

同步練習冊答案