【題目】如圖,已知一次函數(shù)y=﹣x+b的圖象過點A(0,3),點p是該直線上的一個動點,過點P分別作PM垂直x軸于點M,PN垂直y軸于點N,在四邊形PMON上分別截取:PC=MP,MB=OM,OE=ON,ND=NP.

(1)b=  ;

(2)求證:四邊形BCDE是平行四邊形;

(3)在直線y=﹣x+b上是否存在這樣的點P,使四邊形BCDE為正方形?若存在,請求出所有符合的點P的坐標(biāo);若不存在,請說明理由.

【答案】(1)3;(2)證明見解析;(3)在直線y=﹣x+b上存在這樣的點P,使四邊形BCDE為正方形,P點坐標(biāo)是(2,2)或(﹣6,6).

【解析】分析:(1)根據(jù)待定系數(shù)法,可得b的值;(2)根據(jù)矩形的判定與性質(zhì),可得PM與ON,PN與OM的關(guān)系,根據(jù)PC=MP,MB=OM,OE=ON,NO=NP,可得PC與OE,CM與NE,BM與ND,OB與PD的關(guān)系,根據(jù)全等三角形的判定與性質(zhì),可得BE與CD,BC與DE的關(guān)系,根據(jù)平行四邊形的判定,可得答案;(3)根據(jù)正方形的判定與性質(zhì),可得BE與BC的關(guān)系,∠CBM與∠EBO的關(guān)系,根據(jù)全等三角形的判定與性質(zhì),可得OE與BM的關(guān)系,可得P點坐標(biāo)間的關(guān)系,可得答案.

本題解析:

(1)一次函數(shù)y=﹣x+b的圖象過點A(0,3),

3=﹣×0+b,解得b=3.

故答案為:3;

(2)證明:過點P分別作PM垂直x軸于點M,PN垂直y軸于點N,

∴∠M=∠N=∠O=90°,

∴四邊形PMON是矩形,

∴PM=ON,OM=PN,∠M=∠O=∠N=∠P=90°.

∵PC=MP,MB=OM,OE=ON,NO=NP,

∴PC=OE,CM=NE,ND=BM,PD=OB,

在△OBE和△PDC中,

∴△OBE≌△PDC(SAS),

BE=DC.

在△MBC和△NDE中,

,

∴△MBC≌△NDE(SAS),

DE=BC.

∵BE=DC,DE=BC,

∴四邊形BCDE是平行四邊形;

(3)設(shè)P點坐標(biāo)(x,y),

當(dāng)△OBE≌△MCB時,四邊形BCDE為正方形,

OE=BM,

當(dāng)點P在第一象限時,即y=x,x=y.

P點在直線上,

解得,

當(dāng)點P在第二象限時,﹣x=y

,

解得

在直線y=﹣x+b上存在這樣的點P,使四邊形BCDE為正方形,P點坐標(biāo)是(2,2)或(﹣6,6).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,BAC=90°,AC=2AB,點DAC的中點.將一塊銳角為45°的直角三角板如圖放置,使三角板斜邊的兩個端點分別與A、D重合,連接BE、EC

試猜想線段BEEC的數(shù)量及位置關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下面的平面直角坐標(biāo)系中,畫出符合下列條件的點:

1)畫出5個縱坐標(biāo)比橫坐標(biāo)大2的點,分別標(biāo)上,,,

2)畫出5個橫坐標(biāo)是縱坐標(biāo)的2倍的點,分別標(biāo)上,,,

3)觀察上面兩題所畫出的點,你有什么發(fā)現(xiàn),分別用語言敘述出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AC為對角線,EAB上一點,過點EEF∥AD,與AC,DC分別交于點G,F(xiàn),HCG的中點,連接DE,EH,DH,F(xiàn)H.下列結(jié)論中結(jié)論正確的有(

①EG=DF;

②∠AEH+∠ADH=180°;

③△EHF≌△DHC;

,則SEDH=13SCFH .

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2013年四川瀘州8分)如圖,為了測出某塔CD的高度,在塔前的平地上選擇一點A,用測角儀測得塔頂D的仰角為30°,在A、C之間選擇一點B(A、B、C三點在同一直線上).用測角儀測得塔頂D的仰角為75°,且AB間的距離為40m

(1)求點B到AD的距離;

(2)求塔高CD(結(jié)果用根號表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓心角為90°的扇形OAB中,點F、C在半徑OA、OB上,且OC=OF,以CF為邊作正方形CDEF,另兩頂點D、E在弧AB上,若扇形OAB的面積為25π,則正方形CDEF的面積為( 。

A. 25 B. 40 C. 50 D. π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,AC=15,BC=9,點P是線段AC上的一個動點,連接BP,將線段BP繞點P逆時針旋轉(zhuǎn)90°得到線段PD,連接AD,則線段AD的最小值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一塊直角三角形的木板,它的一條直角邊AC長為1.5米,面積為1.5平方米.現(xiàn)在要把它加工成一個正方形桌面,甲、乙兩人的加工方法分別如圖(ⅰ)、(ⅱ)所示,記兩個正方形面積分別為S1S2,請通過計算比較S1S2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于A(﹣1,0),B(4,0),C(0,﹣4)三點,點P是直線BC下方拋物線上一動點.

(1)求這個二次函數(shù)的解析式;

(2)動點P運(yùn)動到什么位置時,PBC面積最大,求出此時P點坐標(biāo)和PBC的最大面積.

查看答案和解析>>

同步練習(xí)冊答案