【題目】在下面的平面直角坐標系中,畫出符合下列條件的點:

1)畫出5個縱坐標比橫坐標大2的點,分別標上,,,

2)畫出5個橫坐標是縱坐標的2倍的點,分別標上,,,,

3)觀察上面兩題所畫出的點,你有什么發(fā)現(xiàn),分別用語言敘述出來.

【答案】1)見解析;(答案不唯一)(2)見解析;(答案不唯一)(3)第(1)小題所畫的點都在直線上;第(2)小題所畫的點都在直線上.(答案不唯一)

【解析】

1)根據(jù)坐標的定義,任意畫出5個縱坐標比橫坐標大2的點即可;

2)根據(jù)坐標的定義,任意畫出5個橫坐標是縱坐標的2倍的點即可;

3)觀察可知,(1)、(2)兩小題各點分別在兩條直線上,得出解析式,寫出結論即可.

解:(1)、(2)描點如下圖:(答案不唯一)

3)第(1)小題所畫的點都在直線上;第(2)小題所畫的點都在直線上.(答案不唯一)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐

問題情境:正方形折疊中的數(shù)學

已知正方形紙片ABCD中,AB=4,點EAB邊上的一點,點GCE的中點,將正方形紙片沿CE所在直線折疊,點B的對應點為點B′.

(1)如圖1,當∠BCE=30°時,連接BG,B′G,求證:四邊形BEB′G是菱形;

深入探究:

(2)CD邊上取點F,使DF=BE,點HAF的中點,再將正方形紙片ABCD沿AF所在直線折疊,點D的對應點為D′,順次連接B′,G,D′,H,B',得到四邊形B′GD′H.

請你從A,B兩題中任選一題作答,我選擇   題.

A題:如圖2,當點B',D′均落在對角線AC上時,

①判斷B′GD′H的數(shù)量關系與位置關系,并說明理由;

②直寫出此時點H,G之間的距離.

B題:如圖3,點MAB的中點,MNBCCD于點N,當點B',D′均落在MN上時,

①判斷B′GD′H的數(shù)量關系與位置關系,并說明理由;

②直接寫出此時點H,G之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D為AB邊上的一點,

(1)求證:△ACE≌△BCD;

(2)若DE=13,BD=12,求線段AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】聯(lián)想三角形內心的概念,我們可引入如下概念.

定義:到三角形的兩邊距離相等的點,叫做此三角形的準內心.

舉例:如圖1,若PD=PE,則點P△ABC的準內心.

應用:如圖2,BF為等邊三角形的角平分線,準內心PBF上,且PF=BP,求證:點P△ABC的內心.

探究:已知△ABC為直角三角形,∠C=90°,準內心PAC上,若PC=AP,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標中,直角梯形OABC的邊OC、OA分別在x軸、y軸上,ABOC,∠AOC=90°,∠BCO=45°BC=12,點C的坐標為(-18,0)

1)求點B的坐標;

2)若直線DE交梯形對角線BO于點D,交y軸于點E,且OE=4,∠OFE=45°,求直線DE的解析式;

3)求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC中∠ACB=90°,E在AB上,以AE為直徑的⊙O與BC相切于D,與AC相交于F,連接AD.

(1)求證:AD平分∠BAC;

(2)連接OC,如果∠B=30°,CF=1,求OC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】高高的路燈掛在路邊的上方,高傲而明亮,小明拿著一根2米長的竹竿,想量一量路燈的高度,直接量是不可能的.于是,他走到路燈旁的一個地方,豎起竹竿(即AE),這時,他量了一下竹竿的影長(AC)正好是1米,他沿著影子的方向走,向遠處走出兩根竹竿的長度(即AB=4米),他又豎起竹竿,這時竹竿的影長正好是一根竹竿的長度(即BD=2米).此時,小明抬頭瞧瞧路燈,若有所思地說:噢,我知道路燈有多高了!同學們,請你和小明一起解答這個問題:

(1)在圖中作出路燈O的位置,并作OP⊥lP.

(2)求出路燈O的高度,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y=﹣x+b的圖象過點A(0,3),點p是該直線上的一個動點,過點P分別作PM垂直x軸于點M,PN垂直y軸于點N,在四邊形PMON上分別截。篜C=MP,MB=OM,OE=ON,ND=NP.

(1)b=  ;

(2)求證:四邊形BCDE是平行四邊形;

(3)在直線y=﹣x+b上是否存在這樣的點P,使四邊形BCDE為正方形?若存在,請求出所有符合的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀與應用:

閱讀1:a、b為實數(shù),且a>0,b>0,因為,所以,從而(當ab時取等號).

閱讀2:函數(shù)(常數(shù)m>0,x>0),由閱讀1結論可知: ,所以當時,函數(shù)的最小值為

閱讀理解上述內容,解答下列問題:

問題1:已知一個矩形的面積為4,其中一邊長為x,則另一邊長為,周長為,求當x=__________時,周長的最小值為__________.

問題2:已知函數(shù)y1x+1(x>-1)與函數(shù)y2x2+2x+17(x>-1),當x=__________時, 的最小值為__________.

問題3:某民辦學習每天的支出總費用包含以下三個部分:一是教職工工資6400元;二是學生生活費每人10元;三是其他費用.其中,其他費用與學生人數(shù)的平方成正比,比例系數(shù)為0.01.當學校學生人數(shù)為多少時,該校每天生均投入最低?最低費用是多少元?(生均投入=支出總費用÷學生人數(shù))

查看答案和解析>>

同步練習冊答案