如圖,已知二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),交y軸于點(diǎn)C,過點(diǎn)C作CD⊥y軸交該拋物線于點(diǎn)D,且AB=2,CD=4.
(1)該拋物線的對稱軸為______,B點(diǎn)坐標(biāo)為(______),CO=______;
(2)若P為線段OC上的一個(gè)動(dòng)點(diǎn),四邊形PBQD是平行四邊形,連接PQ.試探究:
①是否存在這樣的點(diǎn)P,使得PQ2=PB2+PD2?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請說明理由.
②當(dāng)PQ長度最小時(shí),求出此時(shí)點(diǎn)Q的坐標(biāo).

解:(1)∵點(diǎn)C在y軸上,CD=4,
∴拋物線的對稱軸為直線x==2,
∵AB=2,
∴點(diǎn)B的橫坐標(biāo)為2+=3,
∴點(diǎn)B的坐標(biāo)為(3,0);
∵對稱軸為直線x=-=-2,
∴b=-4,
∵點(diǎn)B(3,0)在拋物線上,
∴9-4×3+c=0,
解得c=3,
∴CO=3;

(2)①不存在這樣的點(diǎn)P,使得PQ2=PB2+PD2
理由如下:∵四邊形PBQD是平行四邊形,
∴PB=DQ,
若PQ2=PB2+PD2,則PQ2=DQ2+PD2,
∴∠PDQ=90°,
∵四邊形PBQD是平行四邊,
∴AB∥DQ,
∴∠BPD=180°-90°=90°,
∴△PBO∽△DPC,
=,
設(shè)OP=m,則=,
整理得,m2-3m+12=0,
△=(-3)2-4×1×12=-39<0,
∴這個(gè)方程沒有實(shí)數(shù)根,
∴不存在這樣的點(diǎn)P,使得PQ2=PB2+PD2;

②連接BD交PQ于M,
∵四邊形PBQD是平行四邊形,
∴M為BD、PQ的中點(diǎn),
∴PQ取得最小值時(shí),MP必定取得最小值,
根據(jù)垂線段最短,當(dāng)P為OC的中點(diǎn)時(shí),PQ最小,
此時(shí),MP為梯形OBDC的中位線,MP∥OB,MP⊥y軸,
MP=×(3+4)=
∴PQ的最小值為2×=7,
此時(shí),點(diǎn)Q的坐標(biāo)為(7,).
故答案為:直線x=2;(3,0);3.
分析:(1)根據(jù)拋物線的對稱性,利用CD的長度求出對稱軸,再根據(jù)AB的長度結(jié)合對稱軸求出點(diǎn)B的坐標(biāo);根據(jù)對稱軸求出b的值,再把點(diǎn)B的坐標(biāo)代入拋物線解析式求出c的值,即可得到CO的長;
(2)①根據(jù)平行四邊形的對邊相等可得PB=DQ,再利用勾股定理逆定理判斷出∠PDQ=90°,然后根據(jù)平行四邊形的鄰角互補(bǔ)求出∠DPB=90°,再判斷出△PBO和△DPC相似,根據(jù)相似三角形的列式表示出OP,整理后根據(jù)方程解的情況確定點(diǎn)P不存在;
②連接BD交PQ于點(diǎn)M,根據(jù)平行四邊形的對角線互相平分可得M為BD、PQ的中點(diǎn),根據(jù)垂線段最短可得P為OC的中點(diǎn)時(shí),MP最小,PQ也最小,再根據(jù)梯形的中位線定理求出PM的長度,然后得到PQ的長度,最后寫出點(diǎn)Q的坐標(biāo)即可.
點(diǎn)評:本題是二次函數(shù)綜合題型,主要考查了二次函數(shù)圖象的對稱性,拋物線上點(diǎn)的坐標(biāo)特征,平行四邊形的對邊平行且相等的性質(zhì),平行四邊形的鄰角互補(bǔ),對角線互相平分的性質(zhì),根的判別式的應(yīng)用,梯形的中位線定理以及垂線段最短的性質(zhì),綜合性較強(qiáng),但難度不大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(
5
2
,
13
4
),B點(diǎn)在y軸上,直線與x軸的交點(diǎn)為F,P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過P作x軸的垂線與這個(gè)二次函數(shù)的圖象交于E點(diǎn).
(1)求k,m的值及這個(gè)二次函數(shù)的解析式;
(2)設(shè)線段PE的長為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個(gè)二次函數(shù)圖象對稱軸的交點(diǎn),在線段AB上是否存在點(diǎn)P,使得以點(diǎn)P、E、D為頂點(diǎn)的精英家教網(wǎng)三角形與△BOF相似?若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+3(a≠0)的圖象與x軸交于點(diǎn)A(-1,0)和點(diǎn)B(3,0)兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C.
(1)求此二次函數(shù)的解析式,并寫出它的對稱軸;
(2)若直線l:y=kx(k>0)與線段BC交于點(diǎn)D(不與點(diǎn)B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點(diǎn)的三角形與△BAC相似?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由;
(3)若直線l′:y=m與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,0),直線y=x+b與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(3,4),點(diǎn)B在y軸上.點(diǎn)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過點(diǎn)P作x軸的垂線與該二次函數(shù)的圖象交于點(diǎn)E.
(1)求b的值及這個(gè)二次函數(shù)的關(guān)系式;
(2)設(shè)線段PE的長為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)若點(diǎn)D為直線AB與該二次函數(shù)的圖象對稱軸的交點(diǎn),則四邊形DCEP能否構(gòu)成平行四邊形?如果能,請求出此時(shí)P點(diǎn)的坐標(biāo);如果不能,請說明理由.
(4)以PE為直徑的圓能否與y軸相切?如果能,請求出點(diǎn)P的坐標(biāo);如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標(biāo)軸交于點(diǎn)A(-1,0)和點(diǎn)C(0,-5).
(1)求該二次函數(shù)的解析式和它與x軸的另一個(gè)交點(diǎn)B的坐標(biāo).
(2)在上面所求二次函數(shù)的對稱軸上存在一點(diǎn)P(2,-2),連接OP,找出x軸上所有點(diǎn)M的坐標(biāo),使得△OPM是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衡水一模)如圖,已知二次函數(shù)y=-
12
x2+bx+c
的圖象經(jīng)過A(2,0)、B(0,-6)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的對稱軸與x軸交于點(diǎn)C,連接BA、BC,求△ABC的面積;
(3)若拋物線的頂點(diǎn)為D,在y軸上是否存在一點(diǎn)P,使得△PAD的周長最?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案