【題目】如圖,在菱形ABCD中,AE⊥BC于E,將△ABE沿AE所在直線翻折得△AEF,若AB=2,∠B=45°,則△AEF與菱形ABCD重疊部分(陰影部分)的面積為( ).
A. 2 B. C. D.
【答案】D
【解析】
在邊長(zhǎng)為2的菱形ABCD中,∠B=45°,AE為BC邊上的高,可求得AE的長(zhǎng),求得△ABF、△AEF、△CGF的面積,計(jì)算即可.
∵在邊長(zhǎng)為2的菱形ABCD中,∠B=45°,AE為BC邊上的高,
∴AE=,
由折疊的性質(zhì)可知,△ABF為等腰直角三角形,
∴S△ABF=ABAF=2,S△ABE=1,
∴CF=BF-BC=2-2,
∵AB∥CD,
∴∠GCF=∠B=45°,
又由折疊的性質(zhì)知,∠F=∠B=45°,
∴CG=GF=2-.
∴S△CGF=GCGF=3-2,
∴重疊部分的面積為:2-1-(3-2)=2-2,
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC= .對(duì)角線AC,BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交BC,AD于點(diǎn)E,F(xiàn).
(1)證明:當(dāng)旋轉(zhuǎn)角為90°時(shí),四邊形ABEF是平行四邊形;
(2)試說(shuō)明在旋轉(zhuǎn)過(guò)程中,線段AF與EC總保持相等;
(3)在旋轉(zhuǎn)過(guò)程中,四邊形BEDF可能是菱形嗎?如果不能,請(qǐng)說(shuō)明理由;如果能,說(shuō)明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,、分別是和的平分線,于,交于,于,交于,,,,,結(jié)論①;②;③;④.其中正確的有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),共享單車(chē)服務(wù)的推出(如圖1),極大的方便了城市公民綠色出行,圖2是某品牌某型號(hào)單車(chē)的車(chē)架新投放時(shí)的示意圖(車(chē)輪半徑約為30cm),其中BC∥直線l,∠BCE=71°,CE=54cm.
(1)求單車(chē)車(chē)座E到地面的高度;(結(jié)果精確到1cm)
(2)根據(jù)經(jīng)驗(yàn),當(dāng)車(chē)座E到CB的距離調(diào)整至等于人體胯高(腿長(zhǎng))的0.85時(shí),坐騎比較舒適.小明的胯高為70cm,現(xiàn)將車(chē)座E調(diào)整至座椅舒適高度位置E′,求EE′的長(zhǎng).(結(jié)果精確到0.1cm)
(參考數(shù)據(jù):sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知,是平面上的任意一點(diǎn),過(guò)點(diǎn)作,,垂足分別為點(diǎn)、,求的度數(shù).
(2)探究與有什么關(guān)系?(直接寫(xiě)出結(jié)論)
(3)通過(guò)上面這兩道題,你能說(shuō)出如果一個(gè)角的兩邊分別垂直于另一個(gè)角的兩邊,則這兩個(gè)角是什么關(guān)系嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】幾何模型:
條件:如圖1,A、B是直線同旁的兩個(gè)定點(diǎn).
問(wèn)題:在直線上確定一點(diǎn)P,使PA+PB的值最。
方法:作點(diǎn)A關(guān)于直線的對(duì)稱點(diǎn)A′,連接A′B交于點(diǎn)P,則PA+PB=A′B的值最。ú槐刈C明).
模型應(yīng)用:
(1)如圖2,已知平面直角坐標(biāo)系中兩定點(diǎn)A(0,-1),B(2,-1),P為x軸上一動(dòng)點(diǎn), 則當(dāng)PA+PB的值最小時(shí),點(diǎn)P的橫坐標(biāo)是______,此時(shí)PA+PB的最小值是______;
(2)如圖3,正方形ABCD的邊長(zhǎng)為2,E為AB的中點(diǎn),P是AC上一動(dòng)點(diǎn).由正方形對(duì)稱性可知,B與D關(guān)于直線AC對(duì)稱,連接BD,則PB+PE的最小值是______;
(3)如圖4,正方形ABCD的面積為12,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線AC上有一動(dòng)點(diǎn)P,則PD+PE的最小值為 ;
(4)如圖5,在菱形ABCD中,AB=8,∠B=60°,點(diǎn)G是邊CD邊的中點(diǎn),點(diǎn)E、F分別是AG、AD上的兩個(gè)動(dòng)點(diǎn),則EF+ED的最小值是_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E,F(xiàn)分別在BC,CD上, ΔAEF是等邊三角形,連接AC交EF于點(diǎn)G,下列結(jié)論:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF=2S△ABE,其中結(jié)論正確的個(gè)數(shù)為( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AC,BD交于點(diǎn)O,且AC=12cm,BD=16cm.點(diǎn)P從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動(dòng),速度為lcm/s;同時(shí),直線EF從點(diǎn)D出發(fā),沿DB方向勻速運(yùn)動(dòng),速度為lcm/s,EF⊥BD,且與AD,BD,CD分別交于點(diǎn)E,Q.F,當(dāng)直線EF停止運(yùn)動(dòng)時(shí),點(diǎn)P也停止運(yùn)動(dòng).連接PF,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<8).解答下列問(wèn)題:
(1)求菱形ABCD的面積;
(2)當(dāng)t=1時(shí),求QF長(zhǎng);
(3)是否存在某一時(shí)刻t,使四邊形APFD是平行四邊形?若存在,求出t值,若不存在,請(qǐng)說(shuō)明理由;
(4)設(shè)△DEF的面積為s(cm2),試用含t的代數(shù)式表示S,并求t為何值時(shí),△DEF的面積與△BPC的面積相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】頂點(diǎn)都在格點(diǎn)上的的三角形叫做格點(diǎn)三角形,如圖,在的方格紙中,是格點(diǎn)三角形.
(1)在圖中,以點(diǎn)為對(duì)稱中心,作出一個(gè)與成中心對(duì)稱的格點(diǎn)三角形,并在題后橫線上直接寫(xiě)出與的位置關(guān)系: .
(2)在圖中,以所在的直線為對(duì)稱軸,作出一個(gè)與成軸對(duì)稱的格點(diǎn)三角形,并在題后橫線上直接寫(xiě)出是什么形狀的特殊三角形: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com