【題目】把一張長(zhǎng)方形紙片ABCD沿EF折疊后EDBC的交點(diǎn)為G,D、C分別在M、N的位置上,若∠EFG=55°,求:

(1)∠FED的度數(shù);

(2)∠FEG的度數(shù);

(3)∠1∠2的度數(shù).

【答案】(1)55°(2)55°(3)70°,110°

【解析】

(1)直接根據(jù)平行線的性質(zhì)可得出結(jié)論;
(2)根據(jù)圖形翻折不變換的性質(zhì)得出結(jié)論;
(3)先根據(jù)補(bǔ)角的定義求出∠1的度數(shù),再由平行線的性質(zhì)即可得出結(jié)論.

(1)ADBC,EFG=55°,∴∠FED=EFG=55°;

(2)∵四邊形EFNM由四邊形EFCD翻折而成,

∴∠FEG=FED=55°;

(3)∵∠FEG=FED=55°,

∴∠1=180°﹣55°﹣55°=70°.

ADBC,

∴∠2=180°﹣1=180°﹣70°=110°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由于只有1張市運(yùn)動(dòng)會(huì)開幕式的門票,小王和小張都想去,兩人商量采取轉(zhuǎn)轉(zhuǎn)盤(如圖,轉(zhuǎn)盤盤面被分為面積相等,且標(biāo)有數(shù)字1,2,3,4的4個(gè)扇形區(qū)域)的游戲方式?jīng)Q定誰勝誰去觀看.規(guī)則如下:兩人各轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤指針停止,如兩次指針對(duì)應(yīng)盤面數(shù)字都是奇數(shù),則小王勝;如兩次指針對(duì)應(yīng)盤面數(shù)字都是偶數(shù),則小張勝;如兩次指針對(duì)應(yīng)盤面數(shù)字是一奇一偶,視為平局.若為平局,繼續(xù)上述游戲,直至分出勝負(fù). 如果小王和小張按上述規(guī)則各轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,則

(1)小王轉(zhuǎn)動(dòng)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤指針停止,對(duì)應(yīng)盤面數(shù)字為奇數(shù)的概率是多少?
(2)該游戲是否公平?請(qǐng)用列表或畫樹狀圖的方法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,點(diǎn)O在AB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過點(diǎn)D,分別交AC,AB于點(diǎn)E,F(xiàn). (Ⅰ)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(Ⅱ)若BD=2 ,BF=2,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個(gè).

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示已知,,OM平分,ON平分;

(1)

(2)如圖∠AOB900,將OCO點(diǎn)向下旋轉(zhuǎn),使∠BOC,仍然分別作∠AOC,∠BOC的平分線OM,ON,能否求出∠MON的度數(shù),若能,求出其值,若不能,試說明理由.

(3),仍然分別作∠AOC,∠BOC的平分線OMON,能否求出∠MON的度數(shù),若能,求的度數(shù);并從你的求解中看出什么什么規(guī)律嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC,點(diǎn)O在AB上,經(jīng)過點(diǎn)A的⊙O與BC相切于點(diǎn)D,交AB于點(diǎn)E.
(1)求證:AD平分∠BAC;
(2)若CD=1,求圖中陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有以下3句話:①AB∥CD,②∠B=∠C、③∠E=∠F、請(qǐng)以其中2句話為條件,第三句話為結(jié)論構(gòu)造命題.

(1)你構(gòu)造的是哪幾個(gè)命題?

(2)你構(gòu)造的命題是真命題還是假命題?請(qǐng)加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D,E在△ABC的邊BC上,連接AD,AE.有下面三個(gè)等式:ABAC;ADAEBDCE.以此三個(gè)等式中的兩個(gè)作為命題的題設(shè),另一個(gè)作為命題的結(jié)論,相構(gòu)成三個(gè)命題.解答下列問題

1)寫出這三個(gè)命題,并直接判斷其是否是真命題;

2)請(qǐng)選擇一個(gè)真命題進(jìn)行證明(先寫出所選命題,然后證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于點(diǎn)O,OD平分∠BOEOF平分∠AOE

1)判斷OFOD的位置關(guān)系,并進(jìn)行證明.

2)若∠AOC:∠AOD15,求∠EOF的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案