【題目】已知一次函數(shù)的圖象分別與坐標軸相交于A、B兩點(如圖所示),與反比例函數(shù)的圖象相交于點C,OA=3.
(1)求一次函數(shù)的解析式和點B的坐標;
(2)作CD⊥x軸,垂足為D,若=1:3,求反比例函數(shù)的解析式.
【答案】(1)一次函數(shù)的解析式為,點B的坐標為(0,2);(2)反比例函數(shù)的解析式為
【解析】分析:(1)由OA=3得A(-3,0),代入得b=2,從而求出一次函數(shù)解析式,令x=0,則y=2,故點B的坐標為(0,2);
(2)分別求出和,設出點C坐標,根據(jù)梯形面積求解即可.
詳解:(1)∵OA=3
∴A(-3,0)
將A(-3,0)代入中得b=2
∴一次函數(shù)的解析式為
令x=0得y=2
∴點B的坐標為(0,2)
(2)由題知
∵=1:3
∴=9
設C(m, ),則有
解得m1=3,m2=-9(舍去)
∴C(3,4)
∵C(3,4)在反比例函數(shù)上
∴反比例函數(shù)的解析式為.
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖, 在中, ,,,P是邊BC上的一動點,過點P作PE⊥AB,垂足為E,延長PE至點Q,使PQ=PC, 聯(lián)結交邊AB于點.
(1)求AD的長;
(2)設,的面積為y, 求y關于x的函數(shù)解析式,并寫出定義域;
(3)過點C作, 垂足為F, 聯(lián)結PF、QF, 試探索當點P在邊BC的什么位置時,為等邊三角形?請指出點P的位置并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察表格:
1條直線 0個交點 平面分成(1+1)塊 | 2條直線 1個交點 平面分成(1+1+2)塊 | 3條直線 (1+2)個交點 平面分成(1+1+2+3)塊 | 4條直線 (1+2+3)個交點 平面分成(1+1+2+3+4)塊 |
根據(jù)表格中的規(guī)律解答問題:
(1)5條直線兩兩相交,有 個交點,平面被分成 塊;
(2)n條直線兩兩相交,有 個交點,平面被分成 塊;
(3)應用發(fā)現(xiàn)的規(guī)律解決問題:一張圓餅切10刀(不許重疊),最多可得到 塊餅.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校準備購進一批節(jié)能燈,已知2只型節(jié)能燈和5只型節(jié)能燈共需45元;4只型節(jié)能燈和3只型節(jié)能燈共需41元.
(1)求一只型節(jié)能燈和一只型節(jié)能燈的售價各是多少元.
(2)學校準備購進這兩種型號的節(jié)能燈共50只,并且型節(jié)能燈的數(shù)量不多于型節(jié)能燈數(shù)量的3倍,請設計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校初三(1)班部分同學接受一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動,收集整理數(shù)據(jù)后,老師將減壓方式分為五類,并繪制了圖1、圖2兩個不完整的統(tǒng)計圖,請根據(jù)圖中的信息解答下列問題.
(1)初三(1)班接受調(diào)查的同學共有多少名;
(2)補全條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中的“體育活動C”所對應的圓心角度數(shù);
(3)若喜歡“交流談心”的5名同學中有三名男生和兩名女生;老師想從5名同學中任選兩名同學進行交流,直接寫出選取的兩名同學都是女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【探索發(fā)現(xiàn)】
如圖①,是一張直角三角形紙片,∠B=60°,小明想從中剪出一個以∠B為內(nèi)角且面積最大的矩形,經(jīng)過多次操作發(fā)現(xiàn),當沿著中位線DE、EF剪下時,所得的矩形的面積最大,隨后,他通過證明驗證了其正確性,并得出:矩形的最大面積與原三角形面積的比值為 .
【拓展應用】
如圖②,在△ABC中,BC=a,BC邊上的高AD=h,矩形PQMN的頂點P、N分別在邊AB、AC上,頂點Q、M在邊BC上,則矩形PQMN面積的最大值為 .(用含a,h的代數(shù)式表示)
【靈活應用】
如圖③,有一塊“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明從中剪出了一個面積最大的矩形(∠B為所剪出矩形的內(nèi)角),求該矩形的面積.
【實際應用】
如圖④,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐師傅從這塊余料中裁出了頂點M、N在邊BC上且面積最大的矩形PQMN,求該矩形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小蟲從點A出發(fā)在一條直線上來回爬行,假定向右爬行的路程記為正數(shù),向左爬行的路程記為負數(shù),爬行的路程依次為:(單位:cm)①+5,②-3,③+10,④-8,⑤-6,⑥+11,⑦-9.
(1)小蟲最后是否回到出發(fā)點A,說明理由;
(2)小蟲在第幾次爬行后離點A最遠,此時距離點A多少厘米?
(3)在爬行過程中,如果每爬行1厘米獎勵一粒芝麻,那么小蟲一共得到多少粒芝麻?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.
(1)如圖,求∠EOF的度數(shù).
(2)如圖,當OB、OC重合時,求∠AOE﹣∠BOF的值;
(3)當∠COD從圖的位置繞點O以每秒3°的速度順時針旋轉(zhuǎn)t秒(0<t<10);在旋轉(zhuǎn)過程中∠AOE﹣∠BOF的值是否會因t的變化而變化,若不發(fā)生變化,請求出該定值;若發(fā)生變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D是BC的中點,DE⊥BC交AC于點E,已知AD=AB,連接BE交AD于點F,下列結論:①BE=CE;②∠CAD=∠ABE;③S△ABF=3S△DEF;④△DEF∽△DAE,其中正確的有( )
A. 1個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com