【題目】已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.
(1)如圖,求∠EOF的度數(shù).
(2)如圖,當OB、OC重合時,求∠AOE﹣∠BOF的值;
(3)當∠COD從圖的位置繞點O以每秒3°的速度順時針旋轉t秒(0<t<10);在旋轉過程中∠AOE﹣∠BOF的值是否會因t的變化而變化,若不發(fā)生變化,請求出該定值;若發(fā)生變化,請說明理由.
【答案】(1)∠EOF=75°;(2)∠AOE﹣∠BOF=35°;(3)∠AOE﹣∠BOF=35°.
【解析】
(1)直接利用角平分線的性質求出∠EOC和∠COF,相加即可求出答案;
(2)利用角平分線的性質求出∠AOE和∠COF,相減即可求出答案;
(3)當OC邊繞O順時針旋轉時,∠AOB是變化的,∠AOB=110°+3°t,∠BOD是不變化的,所以∠AOE-∠BOF值是不變化的;
(1)∵OE平分∠AOC,OF平分∠BOD,
∴∠EOF=∠EOB+∠BOF=∠AOB+∠BOD,
∵∠AOB=110°,∠COD=40°,
∴∠EOF=75°;
(2)∵OE平分∠AOC,OF平分∠BOD,∠AOB=110°,∠COD=40°,
∴∠AOE=55°,∠BOF=20°,
∴∠AOE﹣∠BOF=35°;
(3)∵OF平分∠BOD,
∴∠BOF=∠BOD,
∵∠AOB=110°,BO邊繞點O以每秒3°的速度順時針旋轉t秒,
∴∠AOB=110°+3°t,∠BOF=(40°+3°t),
∴OE平分∠AOB,
∴∠AOE=(110°+3°t),
∴∠AOE﹣∠BOF=(110°+3°t)﹣20°﹣t=35°,
∴在旋轉過程中∠AOE﹣∠BOF的值是不會因t的變化而變化,∠AOE﹣∠BOF=35°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點是直線上任一點,射線和射線分別平分和.
(1)填空:與互補的角有______;
(2)若,求的度數(shù);
(3)當時,請直接寫出的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)的圖象分別與坐標軸相交于A、B兩點(如圖所示),與反比例函數(shù)的圖象相交于點C,OA=3.
(1)求一次函數(shù)的解析式和點B的坐標;
(2)作CD⊥x軸,垂足為D,若=1:3,求反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=4,AC=6,點D、E分別是BC.AD的中點,AF∥BC交CE的延長線于F.則四邊形AFBD的面積為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AD是邊BC上的中線,過點A作AE∥BC,過點D作DE∥AB,DE與AC、AE分別交于點O、點E,聯(lián)結EC.
(1)求證:四邊形ADCE是平行四邊形;
(2)當∠BAC=90°時,求證:四邊形ADCE是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB與x軸交于點B,與y軸交于點A,與反比例函數(shù)y=的圖象在第二象限交于點C,CE⊥x軸,垂足為點E,tan∠ABO=,OB=4,OE=2.
(1)求反比例函數(shù)的解析式;
(2)若點D是反比例函數(shù)圖象在第四象限上的點,過點D作DF⊥y軸,垂足為點F,連接OD、BF,如果S△BAF=4S△DFO,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,表中給出的是某月的月歷,任意選取“”型框中的個數(shù)(如陰影部分所示).請你運用所學的數(shù)學知識來研究,則這個數(shù)的和不可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)軸上A、B、C三點所代表的數(shù)分別是a、b、1.且|a﹣1|﹣|1﹣b|=|a﹣b|.下列四個選項中,有( 。﹤能表示A、B、C三點在數(shù)軸上的位置關系?
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,BF=DE,AE⊥BD,CF⊥BD,垂足分別為E,F(xiàn).
(1)求證:△ABE≌△CDF;
(2)若AC與BD交于點O,求證:AC與BD互相平分.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com