一個(gè)正三棱柱和一個(gè)正四棱柱的底面邊長和高都相等,當(dāng)一只小貓只看到它的一個(gè)側(cè)面時(shí),它看到


  1. A.
    正三棱柱的區(qū)域大
  2. B.
    正四棱柱的區(qū)域大
  3. C.
    兩者的區(qū)域一樣大
  4. D.
    無法確定
D
分析:正三棱柱和正四棱柱的底面邊長相等,但是棱長不能確定,所以看到的區(qū)域大小也不能確定.
解答:正三棱柱和正四棱柱的底面邊長相等,但是棱長不能確定,所以看到的區(qū)域大小不能確定.
故選D.
點(diǎn)評:本題是結(jié)合實(shí)際問題來考查學(xué)生對視點(diǎn),視角和盲區(qū)的理解能力及空間想象能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,現(xiàn)有正三角形紙板150個(gè),長方形紙板180個(gè),正三角形的邊長等于長方形的一邊長,一個(gè)數(shù)學(xué)興趣小組的同學(xué)想利用這些材料做成正三棱柱和正三棱錐模型共60個(gè)(兩種模型都要求有),共有
 
種加工方案.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一個(gè)多面體的面數(shù)(a)和這個(gè)多面體表面展開后得到的平面圖形的頂點(diǎn)數(shù)(b),棱數(shù)(c)之間存在一定規(guī)律,如圖1是正三棱柱的表面展開圖,它原有5個(gè)面,展開后有10個(gè)頂點(diǎn)(重合的頂點(diǎn)只算一個(gè)),14條棱.

【探索發(fā)現(xiàn)】
(1)請?jiān)趫D2中用實(shí)線畫出立方體的一種表面展開圖;
(2)請根據(jù)圖2你所畫的圖和圖3的四棱錐表面展開圖填寫下表:
多面體 面數(shù)a 展開圖的頂點(diǎn)數(shù)b 展開圖的棱數(shù)c
直三棱柱 5 10 14
四棱錐
5
5
8 12
立方體
6
6
14
14
19
19
(3)發(fā)現(xiàn):多面體的面數(shù)(a)、表面展開圖的頂點(diǎn)數(shù)(b)、棱數(shù)(c)之間存在的關(guān)系式是
a+b-c=1
a+b-c=1
;
【解決問題】
(4)已知一個(gè)多面體表面展開圖有17條棱,且展開圖的頂點(diǎn)數(shù)比原多面體的面數(shù)多2,則這個(gè)多面體的面數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:044

如圖所示的圖形是一個(gè)水平放置的正三棱柱被斜著截去一部分后形成的,請畫出它的主視圖、左視圖和俯視圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,現(xiàn)有正三角形紙板150個(gè),長方形紙板180個(gè),正三角形的邊長等于長方形的一邊長,一個(gè)數(shù)學(xué)興趣小組的同學(xué)想利用這些材料做成正三棱柱和正三棱錐模型共60個(gè)(兩種模型都要求有),共有________種加工方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

一個(gè)多面體的面數(shù)(a)和這個(gè)多面體表面展開后得到的平面圖形的頂點(diǎn)數(shù)(b),棱數(shù)(c)之間存在一定規(guī)律,如圖1是正三棱柱的表面展開圖,它原有5個(gè)面,展開后有10個(gè)頂點(diǎn)(重合的頂點(diǎn)只算一個(gè)),14條棱.

【探索發(fā)現(xiàn)】
(1)請?jiān)趫D2中用實(shí)線畫出立方體的一種表面展開圖;
(2)請根據(jù)圖2你所畫的圖和圖3的四棱錐表面展開圖填寫下表:
多面體面數(shù)a展開圖的頂點(diǎn)數(shù)b展開圖的棱數(shù)c
直三棱柱51014
四棱錐______812
立方體__________________
(3)發(fā)現(xiàn):多面體的面數(shù)(a)、表面展開圖的頂點(diǎn)數(shù)(b)、棱數(shù)(c)之間存在的關(guān)系式是______;
【解決問題】
(4)已知一個(gè)多面體表面展開圖有17條棱,且展開圖的頂點(diǎn)數(shù)比原多面體的面數(shù)多2,則這個(gè)多面體的面數(shù)是多少?

查看答案和解析>>

同步練習(xí)冊答案