【題目】在如圖所示的方格紙中,每個小正方形的邊長為1,每個小正方形的頂點(diǎn)都叫做格點(diǎn).△ABC的頂點(diǎn)A、B、C都在格點(diǎn)上.

(1)BAC的平行線BD

(2)作出表示BAC的距離的線段BE

(3)線段BEBC的大小關(guān)系是:BE   BC(、“=”)

(4)ABC的面積為   

【答案】(1)見解析;(2)見解析;(3) <;(4) 9

【解析】

1)連接與點(diǎn)B在同一水平線的格點(diǎn)即可得;

2)過點(diǎn)BAC的垂線,交AC于點(diǎn)E,則BE即為所求;

3)根據(jù)垂線段最短即可得;

4)根據(jù)三角形的面積公式可得

1)如圖BD即為所求;

2)過點(diǎn)BAC的垂線,交AC于點(diǎn)E,則BE即為所求,如圖所示:

3)由垂線段最短得:

故答案為:

4的面積為

故答案為:9

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有甲、乙兩個轉(zhuǎn)盤,每個轉(zhuǎn)盤上各個扇形的圓心角都相等,讓兩個轉(zhuǎn)盤分別自由轉(zhuǎn)動一次,當(dāng)轉(zhuǎn)盤指針落在分界線上時(shí),重新轉(zhuǎn)動.

(1)請你畫樹狀圖或列表表示所有等可能的結(jié)果.
(2)求兩個指針落在區(qū)域的顏色能配成綠色的概率.(黃、藍(lán)兩色混合配成綠色)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B在雙曲線y= (x<0)上,連接OA、AB,以O(shè)A、AB為邊作OABC.若點(diǎn)C恰落在雙曲線y= (x>0)上,此時(shí)OABC的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABAC,BDACD,CEABE,BD、CE交于O,連結(jié)AO,則圖中共有全等三角形的對數(shù)為(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=45°,AD⊥BC于點(diǎn)D,以D為圓心DC為半徑作⊙D交AD于點(diǎn)G,過點(diǎn)G作⊙D的切線交AB于點(diǎn)F,且F恰好為AB中點(diǎn).
(1)求tan∠ACD的值.
(2)連結(jié)CG并延長交AB于點(diǎn)H,若AH=2,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形DEF是三角形ABC經(jīng)過某種變換得到的圖形,點(diǎn)A與點(diǎn)D、點(diǎn)B與點(diǎn)E、點(diǎn)C與點(diǎn)F分別是對應(yīng)點(diǎn).觀察點(diǎn)與點(diǎn)的坐標(biāo)之間的關(guān)系,解答下列問題:

(1)分別寫出點(diǎn)A與點(diǎn)D、點(diǎn)B與點(diǎn)E、點(diǎn)C與點(diǎn)F的坐標(biāo),并說出三角形DEF是由三角形ABC經(jīng)過怎樣的變換得到的;

(2)若點(diǎn)Q(a3,4b)是點(diǎn)P(2a2b3)通過上述變換得到的,求ab的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AD=5,點(diǎn)E、F是正方形ABCD內(nèi)的兩點(diǎn),且AE=FC=3,BE=DF=4,則EF的長為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠B=90°,AB=16cmBC=12cm,PQ△ABC邊上的兩個動點(diǎn),其中點(diǎn)P從點(diǎn)A開始沿A→B方向運(yùn)動,且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開始沿B→C→A方向運(yùn)動,且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.

1)出發(fā)2秒后,求△PBQ的面積;

2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動時(shí),出發(fā)幾秒鐘后,△PQB能形成等腰三角形?

3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動時(shí),求能使△BCQ成為等腰三角形的運(yùn)動時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BC的垂直平分線EF交∠ABC的平分線BD于E,如果∠BAC=60°,∠ACE=24°,那么∠BCE的大小是( 。

A. 24° B. 30° C. 32° D. 36°

查看答案和解析>>

同步練習(xí)冊答案