【題目】如圖,點在等邊的邊上,,射線于點,點是射線上一動點,點是線段上一動點,當的值最小時,,則( )

A. 14B. 13C. 12D. 10

【答案】D

【解析】

根據(jù)等邊三角形的性質得到AC=BC,∠B=60°,作點E關于直線CD的對稱點G,過GGFABF,交CDP,則此時,EP+PF的值最小,根據(jù)直角三角形的性質得到BG=2BF=14,求得EG=8,于是得到結論.

解:∵△ABC是等邊三角形,

AC=BC,∠B=60°,

作點E關于直線CD的對稱點G,過GGFABF,交CDP,

則此時,EP+PF的值最小,

∵∠B=60°,∠BFG=90°,

∴∠G=30°

BF=7,

BG=2BF=14

EG=8,

CE=CG=4,

AC=BC=10,

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠MON=90,A是∠MON內部的一點,過點AAB⊥ON,垂點為點B,AB=3厘米,OB=4厘米,動點E、F同時從O點出發(fā),點E1.5厘米/秒的速度沿ON方向運動,點F2厘米/秒的速度沿OM方向運動,EFOA交于點C,連接AE,當點E到達點B時,點F隨之停止運動。設運動時間為t秒(t>0)。

(1)當t=1秒時,ΔEOF與ΔABO是否相似?請說明理由。

(2)在運動過程中,不論t取何值時,總有EF⊥OA,為什么?

3)連接AF,在運動過程中,是否存在某一時刻t,使得SΔAEF=S四邊形ABOF ?若存在,請求出此時t的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下面的解題過程,再解決問題.

解方程: x4 -6x2 +5=0.

這是一個一元四次方程,根據(jù)該方程的特點,它的通常解法是:

設 x2 = y ,則原方程可化為 y2 -6y+5=0.①

解這個方程,得 y1 =1, y2 =5.當 y =1時, x=±1;當 y=5時, x=±.所以原方程有四個根: x1 =1, x2 =-1, x3 =, x4 =-.

(1)填空:在由原方程得到方程①的過程中,利用________法達到降次的目的,體現(xiàn)了________的數(shù)學思想.

(2)解方程:( x2 -x )2 -4(x2 -x )-12=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,A=36°,BD,CE是角平分線,則圖中的等腰三角形共有

A. 8 B. 7 C. 6 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有實數(shù)根.

(1)求k的取值范圍;

(2)若此方程的兩實數(shù)根x1,x2滿足x12+x22=11,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=x2+bx+c經(jīng)過點A(﹣2,0),B(0、﹣4)與x軸交于另一點C,連接BC.

(1)求拋物線的解析式;

(2)如圖,P是第一象限內拋物線上一點,且SPBO=SPBC,求證:AP∥BC;

(3)在拋物線上是否存在點D,直線BD交x軸于點E,使ABE與以A,B,C,E中的三點為頂點的三角形相似(不重合)?若存在,請求出點D的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人進行慢跑練習,慢跑路程y(米)與所用時間t(分鐘)之間的關系如圖所示,下列說法錯誤的是(

A. 2分鐘,乙的平均速度比甲快

B. 5分鐘時兩人都跑了500

C. 甲跑完800米的平均速度為100/

D. 甲乙兩人8分鐘各跑了800

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,點PBC邊上一動點,連結APAP的垂直平分線交BD于點G,交 AP于點E,在P點由B點到C點的運動過程中,APG的大小變化情況是( )

A. 變大 B. 先變大后變小 C. 先變小后變大 D. 不變

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx-5(a≠0)經(jīng)過點A(4,-5),與x軸的負半軸交于點B,與y軸交于點C,且OC=5OB,拋物線的頂點為點D.

(1)求這條拋物線的表達式;

(2)連接AB、BC、CD、DA,求四邊形ABCD的面積.

查看答案和解析>>

同步練習冊答案