【題目】在矩形的各邊、、上分別選取點(diǎn)、、,使得,如果,,四邊形的最大面積是( .

A.1350B.1300

C.1250D.1200

【答案】C

【解析】

設(shè)AE=x,四邊形EFGH的面積是S,則AH=CF=CG=x.分別求出矩形四個(gè)角落的三角形的面積,再利用矩形的面積減去四個(gè)角落的三角形的面積,可得四邊形EFGH的面積S;先配方,確定函數(shù)的對(duì)稱軸,再與函數(shù)的定義域結(jié)合即可求出四邊形EFGH的面積最大值.

設(shè)AE=x,四邊形EFGH的面積是S,則AH=CF=CG=x

由題意,BE=DG=60xBF=DH=40x,則

SAHE=SCGFx2,SDGH=SBEF60x)(40x),

所以四邊形EFGH的面積為:

S=60×40x2﹣(60x)(40x=2x2+100x=2x252+12500x40);

當(dāng)x=25時(shí),S最大值=1250

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教科書中這樣寫道:“我們把多項(xiàng)式叫做完全平方式,如果一個(gè)多項(xiàng)式不是完全平方式,我們常做如下變形:先添加一個(gè)適當(dāng)?shù)捻?xiàng)使式子中出現(xiàn)完全平方式,再減去這個(gè)項(xiàng),使整個(gè)式子的值不變這種方法叫做配方法.配方法是一種重要的解決問題的數(shù)學(xué)方法,不僅可以將一個(gè)看似不能分解的多項(xiàng)式分解因式,還能解決一些與非負(fù)數(shù)有關(guān)的問題或求化數(shù)式最大值.最小值等.

例如:分解因式

;例如求代數(shù)式的最小值..可知當(dāng)時(shí),有最小值,最小值是,根據(jù)閱讀材料用配方法解決下列問題:

1)分解因式: _____

2)當(dāng)為何值時(shí),多項(xiàng)式有最小值,并求出這個(gè)最小值.

3)當(dāng)為何值時(shí).多項(xiàng)式有最小值并求出這個(gè)最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BC=6,EF分別是AB,AC的中點(diǎn),動(dòng)點(diǎn)P在射線EF上,BPCE于點(diǎn)D,∠CBP的平分線交CE于點(diǎn)Q,當(dāng)CQ=QE時(shí),EPBP的值為( ).

A.6B.9C.12D.18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在小水池旁有一盞路燈,已知支架AB的長是0.8m,A端到地面的距離AC4m,支架AB與燈柱AC的夾角為65°.小明在水池的外沿D測得支架B端的仰角是45°,在水池的內(nèi)沿E測得支架A端的仰角是50°(點(diǎn)C、E、D在同一直線上),求小水池的寬DE.(結(jié)果精確到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明利用剛學(xué)過的測量知識(shí)來測量學(xué)校內(nèi)一棵古樹的高度。一天下午,他和學(xué)習(xí)小組的同學(xué)帶著測量工具來到這棵古樹前,由于有圍欄保護(hù),他們無法到達(dá)古樹的底部B,如圖所示。于是他們先在古樹周圍的空地上選擇一點(diǎn)D,并在點(diǎn)D處安裝了測量器DC,測得古樹的頂端A的仰角為45°;再在BD的延長線上確定一點(diǎn)G,使DG=5米,并在G處的地面上水平放置了一個(gè)小平面鏡,小明沿著BG方向移動(dòng),當(dāng)移動(dòng)帶點(diǎn)F時(shí),他剛好在小平面鏡內(nèi)看到這棵古樹的頂端A的像,此時(shí),測得FG=2米,小明眼睛與地面的距離EF=1.6米,測傾器的高度CD=0.5米。已知點(diǎn)F、G、DB在同一水平直線上,且EF、CD、AB均垂直于FB,求這棵古樹的高度AB。(小平面鏡的大小忽略不計(jì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2﹣4y=﹣ax2+4都經(jīng)過x軸上的A、B兩點(diǎn),兩條拋物線的頂點(diǎn)分別為C、D.當(dāng)四邊形ACBD的面積為40時(shí),a的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,動(dòng)點(diǎn)的速度,從點(diǎn)運(yùn)動(dòng)到點(diǎn),動(dòng)點(diǎn)同時(shí)以的速度,從點(diǎn)運(yùn)動(dòng)到點(diǎn),當(dāng)為直角三角形時(shí),點(diǎn)運(yùn)動(dòng)的時(shí)間為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖正方形ABCD的邊長為2,點(diǎn)E,F,G,H分別在AD,ABBC,CD上,且EA=FB=GC=HD,分別將AEF,BFGCGH,DHE沿EFFG,GH,HE翻折,得四邊形MNKP,設(shè)AE=x0x1),S四邊形MNKP=y,則y關(guān)于x的函數(shù)圖象大致為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)為腰中點(diǎn),點(diǎn)在底邊上,且,則的長為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案