【題目】二次函數(shù)y=ax2+bx+c的自變量x與函數(shù)值y的對應(yīng)值如圖,下列說法錯誤的是:( 。
x | … | ﹣6 | ﹣5 | ﹣4 | ﹣3 | ﹣2 | ﹣1 | … |
y | … | 10 | 4 | 0 | ﹣2 | ﹣2 | 0 | … |
A.拋物線開口向上
B.拋物線與y軸的交點是(0,4)
C.當(dāng)x<﹣2時,y隨x的增大而減小
D.當(dāng)x>﹣2時,y隨x的增大而增大
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在⊙O中,點C為劣弧AB的中點,連接AC并延長至D,使CA=CD,連接DB并延長交⊙O于點E,連接AE.
(1)求證:AE是⊙O的直徑;
(2)如圖2,連接CE,⊙O的半徑為5,AC長為4,求陰影部分面積之和.(保留與根號) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小型工廠9月份生產(chǎn)的A、B兩種產(chǎn)品數(shù)量分別為200件和100件,A、B兩種產(chǎn)品出廠單價之比為2:1,由于訂單的增加,工廠提高了A、B兩種產(chǎn)品的生產(chǎn)數(shù)量和出廠單價,10月份A產(chǎn)品生產(chǎn)數(shù)量的增長率和A產(chǎn)品出廠單價的增長率相等,B產(chǎn)品生產(chǎn)數(shù)量的增長率是A產(chǎn)品生產(chǎn)數(shù)量的增長率的一半,B產(chǎn)品出廠單價的增長率是A產(chǎn)品出廠單價的增長率的2倍.設(shè)B產(chǎn)品生產(chǎn)數(shù)量的增長率為x(x>0).
(1)用含有x的代數(shù)式填表(不需化簡):
9月份生產(chǎn)數(shù)量 | 生產(chǎn)數(shù)量的增長率 | 10月份生產(chǎn)數(shù)量 | |
產(chǎn)品A | 200 |
|
|
產(chǎn)品B | 100 | x |
|
(2)若9月份兩種產(chǎn)品出廠單價的和為90元,10月份該工廠的總收入增加了4.4x,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用一段長32m的籬笆和長8m的墻,圍成一個矩形的菜園.
(1)如圖1,如果矩形菜園的一邊靠墻AB,另三邊由籬笆CDEF圍成
①設(shè)DE等于xm,直接寫出菜園面積y與x之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
②菜園的面積能不能等于110m2?若能,求出此時x的值;若不能,請說明理由;
(2)如圖2,如果矩形菜園的一邊由墻AB和一節(jié)籬笆BF構(gòu)成,另三邊由籬笆ADEF圍成,求菜園面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標系xOy中的位置如圖所示:
(1)若△A1B1C1與△ABC關(guān)于原點O成中心對稱,則點B1的坐標為 ;
(2)將△ABC向右平移4個單位長度得到△A2B2C2,則點A2的坐標為 ;
(3)將△ABC繞O點順時針方向旋轉(zhuǎn)90°,則點B走過的路徑長為 ;
(4)在x軸上找一點P,使PB+PC的值最小,則點P的坐標為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,A(0,4)、B(4,4)、C(4,0),D(1,0).
(1)若拋物線經(jīng)過A、B、D三點,求此拋物線的解析式;
(2)若(1)中的拋物線的頂點為E,連接EB,若P是EB上一動點,過P點作PM⊥AB,PN垂直于y軸,垂足分別是M、N.求矩形AMPN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國務(wù)院辦公廳在2015年3月16日發(fā)布了《中國足球發(fā)展改革總體方案》,這是中國足球史上的重大改革,為進一步普及足球知識,傳播足球文化,我市某區(qū)在中小學(xué)舉行了“足球在身邊”知識競賽,各類獲獎學(xué)生人數(shù)的比例情況如圖所示,其中獲得三等獎的學(xué)生共50名,請結(jié)合圖中信息,解答下列問題:
(1)獲得一等獎的學(xué)生人數(shù);
(2)在本次知識競賽活動中,A,B,C,D四所學(xué)校表現(xiàn)突出,現(xiàn)決定從這四所學(xué)校中隨機選取兩所學(xué)校舉行一場足球友誼賽,請用畫樹狀圖或列表的方法求恰好選到A,B兩所學(xué)校的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,輪船從處以每小時60海里的速度沿南偏東方向勻速航行,在處觀測燈塔位于南偏東方向上,輪船航行40分鐘到達處,在處觀測燈塔位于北偏東方向上,求處與燈塔的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2﹣2x+3的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求點A、B、C的坐標;
(2)點M(m,0)為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N,可得矩形PQNM.如圖,點P在點Q左邊,試用含m的式子表示矩形PQNM的周長;
(3)當(dāng)矩形PQNM的周長最大時,m的值是多少?并求出此時的△AEM的面積;
(4)在(3)的條件下,當(dāng)矩形PMNQ的周長最大時,連接DQ,過拋物線上一點F作y軸的平行線,與直線AC交于點G(點G在點F的上方).若FG=2DQ,求點F的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com