【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=(m為常數(shù),m>1,x>0)的圖象經(jīng)過點(diǎn)P(m,1)Q(1,m),直線PQx軸,y軸分別交于C,D兩點(diǎn),點(diǎn)M(x,y)是該函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M分別作x軸和y軸的垂線,垂足分別為A,B.

(1)求∠OCD的度數(shù);

(2)當(dāng)m=3,1<x<3時(shí),存在點(diǎn)M使得OPM∽△OCP,求此時(shí)點(diǎn)M的坐標(biāo);

(3)當(dāng)m=5時(shí),矩形OAMBOPQ的重疊部分的面積能否等于4.1?請說明你的理由.

【答案】(1)OCD=45°;(2)M(2,);(3)不存在.理由見解析.

【解析】(1)想辦法證明OC=OD即可解決問題;

(2)設(shè)M(a,),由OPM∽△OCP,推出,由此構(gòu)建方程求出a,再分類求解即可解決問題;

(3)不存在分三種情形說明:①當(dāng)1<x<5時(shí),如圖1中;②當(dāng)x≤1時(shí),如圖2中;③當(dāng)x≥5時(shí),如圖3.

1)設(shè)直線PQ的解析式為y=kx+b,則有 ,

解得,

y=-x+m+1,

x=0,得到y=m+1,D(0,m+1),

y+0,得到x=m+1,C(m+1,0),

OC=OD,

∵∠COD=90°,

∴∠OCD=45°.

(2)設(shè)M(a,),

∵△OPM∽△OCP,

OP2=OCOM,

當(dāng)m=3時(shí),P(3,1),C(4,0),

OP2=32+12=10,OC=4,OM=,

,

10=4,

4a4-25a2+36=0,

(4a2-9)(a2-4)=0,

a=±,a=±2,

1<a<3,

a=2,

當(dāng)a=時(shí),M(,2),

PM=,CP=,

,(舍去)

當(dāng)a=2時(shí),M(2,),PM=,CP=

,成立,

M(2,).

(3)不存在.理由如下:

當(dāng)m=5時(shí),P(5,1),Q(1,5),設(shè)M(x,),

OP的解析式為:y=x,OQ的解析式為y=5x,

①當(dāng)1<x<5時(shí),如圖1中,

E(),F(xiàn)(x,x),

S=S矩形OAMB-SOAF-SOBE

=5-xx-=4.1,

化簡得到:x4-9x2+25=0,

<O,

∴沒有實(shí)數(shù)根.

②當(dāng)x≤1時(shí),如圖2中,

S=SOGH<SOAM=2.5,

∴不存在,

③當(dāng)x≥5時(shí),如圖3中,

S=SOTS<SOBM=2.5,

∴不存在,

綜上所述,不存在.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】614日是世界獻(xiàn)血日,某市采取自愿報(bào)名的方式組織市民義務(wù)獻(xiàn)血.獻(xiàn)血時(shí)要對獻(xiàn)血者的血型進(jìn)行檢測,檢測結(jié)果有“A”、“B”、“AB”、“O”4種類型.在獻(xiàn)血者人群中,隨機(jī)抽取了部分獻(xiàn)血者的血型結(jié)果進(jìn)行統(tǒng)計(jì),并根據(jù)這個(gè)統(tǒng)計(jì)結(jié)果制作了兩幅不完整的圖表:

血型

A

B

AB

O

人數(shù)

   

10

5

   

(1)這次隨機(jī)抽取的獻(xiàn)血者人數(shù)為   人,m=   ;

(2)補(bǔ)全上表中的數(shù)據(jù);

(3)若這次活動(dòng)中該市有3000人義務(wù)獻(xiàn)血,請你根據(jù)抽樣結(jié)果回答:

從獻(xiàn)血者人群中任抽取一人,其血型是A型的概率是多少?并估計(jì)這3000人中大約有多少人是A型血?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(﹣15),B(﹣1,0),C(﹣4,3).

1)在圖中的點(diǎn)上標(biāo)出相應(yīng)字母A、B、C,并求出ABC的面積;

2)在圖中作出ABC關(guān)于y軸的對稱圖形A1B1C1

3)寫出點(diǎn)A1,B1,C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列各式:

1   

2   ;

3   

4   ;

5   

6)猜想   .(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtACB中,∠ACB=90°,ABC的角平分線AD、BE相交于點(diǎn)P,過PPFADBC的延長線于點(diǎn)F,交AC于點(diǎn)H,則下列結(jié)論:①∠APB=135°;BF=BA;PH=PD;④連接CP,CP平分∠ACB,其中正確的是( 。

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mxx軸的負(fù)半軸于點(diǎn)A.點(diǎn)By軸正半軸上一點(diǎn),點(diǎn)A關(guān)于點(diǎn)B的對稱點(diǎn)A′恰好落在拋物線上.過點(diǎn)A′x軸的平行線交拋物線于另一點(diǎn)C.若點(diǎn)A′的橫坐標(biāo)為1,則A′C的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)部門為了解本部門工人的生產(chǎn)能力情況,進(jìn)行了抽樣調(diào)查.該部門隨機(jī)抽取了30名工人某天每人加工零件的個(gè)數(shù),數(shù)據(jù)如下:

20

21

19

16

27

18

31

29

21

22

25

20

19

22

35

33

19

17

18

29

18

35

22

15

18

18

31

31

19

22

整理上面數(shù)據(jù),得到條形統(tǒng)計(jì)圖:

樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如下表所示:

統(tǒng)計(jì)量

平均數(shù)

眾數(shù)

中位數(shù)

數(shù)值

23

m

21

根據(jù)以上信息,解答下列問題:

(1)上表中眾數(shù)m的值為   

(2)為調(diào)動(dòng)工人的積極性,該部門根據(jù)工人每天加工零件的個(gè)數(shù)制定了獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡達(dá)到或超過這個(gè)標(biāo)準(zhǔn)的工人將獲得獎(jiǎng)勵(lì).如果想讓一半左右的工人能獲獎(jiǎng),應(yīng)根據(jù)   來確定獎(jiǎng)勵(lì)標(biāo)準(zhǔn)比較合適.(填平均數(shù)”、“眾數(shù)中位數(shù)”)

(3)該部門規(guī)定:每天加工零件的個(gè)數(shù)達(dá)到或超過25個(gè)的工人為生產(chǎn)能手.若該部門有300名工人,試估計(jì)該部門生產(chǎn)能手的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明的媽媽在菜市場買回3斤蘿卜、2斤排骨,準(zhǔn)備做蘿卜排骨湯,下面是爸爸媽媽的對話:

媽媽:上個(gè)月蘿卜的單價(jià)是/斤,排骨的單價(jià)比蘿卜的7倍還多2;

爸爸:今天,報(bào)紙上說與上個(gè)月相比,蘿卜的單價(jià)上漲了25%,排骨的單價(jià)上漲了20%”

請根據(jù)上面的對話信息回答下列問題:

1)請用含的式子填空:上個(gè)月排骨的單價(jià)是_________/斤,這個(gè)月蘿卜的單價(jià)是__________/斤,排骨的單價(jià)是______________/斤。

2)列式表示今天買的蘿卜和排骨比上月買同重量的蘿卜和排骨一共多花多少元?(結(jié)果要求化成最簡)

3)當(dāng)4,求今天買的蘿卜和排骨比上月買同重量的蘿卜和排骨一共多花多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 “賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會(huì)”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時(shí)默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:

請結(jié)合圖表完成下列各題:

(1)①表中a的值為 ,中位數(shù)在第 組;

頻數(shù)分布直方圖補(bǔ)充完整;

(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?

(3)第5組10名同學(xué)中,有4名男同學(xué),現(xiàn)將這10名同學(xué)平均分成兩組進(jìn)行對抗練習(xí),且4名男同學(xué)每組分兩人,求小明與小強(qiáng)兩名男同學(xué)能分在同一組的概率.

組別

成績x分

頻數(shù)(人數(shù))

第1組

50≤x<60

6

第2組

60≤x<70

8

第3組

70≤x<80

14

第4組

80≤x<90

a

第5組

90≤x<100

10

查看答案和解析>>

同步練習(xí)冊答案