【題目】如圖①,在4×8的網(wǎng)格紙中,每個(gè)小正方形的邊長(zhǎng)都為1,動(dòng)點(diǎn)PQ分別從點(diǎn)D、A同時(shí)出發(fā)向右移動(dòng),點(diǎn)P的運(yùn)動(dòng)速度為每秒2個(gè)單位,點(diǎn)Q的運(yùn)動(dòng)速度為每秒1個(gè)單位,當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩個(gè)點(diǎn)都停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t0t4).

1)請(qǐng)?jiān)?/span>4×8的網(wǎng)格紙圖①中畫出t3秒時(shí)的線段PQ.并求其長(zhǎng)度;

2)若MBC的中點(diǎn),PQM的面積為S,請(qǐng)用含有t的代數(shù)式來(lái)表示S;

3)當(dāng)t為多少時(shí),△PQB是以PQ為腰的等腰三角形?

【答案】(1)圖見(jiàn)解析,PQ=5;(2);(3t3 時(shí),△PQB是以PQ為腰的等腰三角形.

【解析】

根據(jù)點(diǎn)P的運(yùn)動(dòng)速度為每秒2個(gè)單位,點(diǎn)Q的運(yùn)動(dòng)速度為每秒1個(gè)單位可知,當(dāng)t=3秒時(shí),DP=6,AQ=3即可畫出線段PQ;

2)利用割補(bǔ)法求三角形面積;

3)設(shè)時(shí)間為t,則在t秒鐘,P運(yùn)動(dòng)了2t個(gè)格,Q運(yùn)動(dòng)了t個(gè)格,分情況 PQ=BQPQBP,然后根據(jù)勾股定理列出關(guān)于t的方程,解得t即可.

如圖所示:

由勾股定理得PQ 5;

2)∵MBC的中點(diǎn)

CM=BM

3)設(shè)時(shí)間為t,則在t秒鐘,P運(yùn)動(dòng)了2t格,Q運(yùn)動(dòng)了t

當(dāng)PQBQ時(shí),即(2tt2+42=(8t2,解得t3(秒).

當(dāng)PQBP時(shí),8t)=82t,解得:t ∴綜上,t3 時(shí),PQB是以PQ為腰的等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,點(diǎn)PAC邊上的一點(diǎn),延長(zhǎng)BP至點(diǎn)D,使得AD=AP,當(dāng)ADAB時(shí),過(guò)點(diǎn)DDEACE

(1)求證:∠CBP=ABP;

(2)ABBC=4,AC=8.求AB的長(zhǎng)度和DE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(10分)學(xué)校組織學(xué)生參加綜合實(shí)踐活動(dòng),他們參與了某種品牌運(yùn)動(dòng)鞋的銷售工作,已知該運(yùn)動(dòng)鞋每雙的進(jìn)價(jià)為120元,為尋求合適的銷售價(jià)格進(jìn)行了4天的試銷,試銷情況如下表所示:

第1天

第2天

第3天

第4天

售價(jià)x(元/雙)

150

200

250

300

銷售量y(雙)

40

30

24

20

(1)觀察表中數(shù)據(jù),x,y滿足什么函數(shù)關(guān)系?請(qǐng)求出這個(gè)函數(shù)關(guān)系式;

(2)若商場(chǎng)計(jì)劃每天的銷售利潤(rùn)為3000元,則其單價(jià)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形ABCD中,∠DAB=B=C=D=90°,AD=BC=6, AB=CD=10.點(diǎn)E為射線DC上的一個(gè)動(dòng)點(diǎn),△ADE與△ADE關(guān)于直線AE對(duì)稱,當(dāng)△ADB為直角三角形時(shí),DE的長(zhǎng)為( 。

A.28B.18C.2D.218

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以正方形ABCD的邊AD作等邊ADE,則∠BEC的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,若OBC邊的中點(diǎn),則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結(jié)論,解決如下問(wèn)題:如圖,在矩形DEFG中,已知DE=4,EF=3,點(diǎn)P在以DE為直徑的半圓上運(yùn)動(dòng),則PF2+PG2的最小值為(  )

A. B. C. 34 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD是⊙O的直徑,AB為⊙O的弦,OPAD,OPAB的延長(zhǎng)線交于點(diǎn)P,過(guò)B點(diǎn)的切線交OP于點(diǎn)C.

(1)求證:∠CBP=ADB.

(2)若OA=2,AB=1,求線段BP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)習(xí)小組做“用頻率估計(jì)概率”的實(shí)驗(yàn)時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如下折線統(tǒng)計(jì)圖,則符合這一結(jié)果的實(shí)驗(yàn)最有可能的是( 。

A. 袋中裝有大小和質(zhì)地都相同的3個(gè)紅球和2個(gè)黃球,從中隨機(jī)取一個(gè),取到紅球

B. 擲一枚質(zhì)地均勻的正六面體骰子,向上的面的點(diǎn)數(shù)是偶數(shù)

C. 先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面

D. 先后兩次擲一枚質(zhì)地均勻的正六面體骰子,兩次向上的面的點(diǎn)數(shù)之和是7或超過(guò)9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù)y=﹣2x+1,下列結(jié)論正確的是( 。

A. 圖象必經(jīng)過(guò)點(diǎn)(﹣2,1) B. 圖象經(jīng)過(guò)第一、二、三象限

C. 當(dāng)x>時(shí),y<0 D. y隨x的增大而增大

查看答案和解析>>

同步練習(xí)冊(cè)答案