【題目】如圖所示,AB是⊙O的直徑,點(diǎn)C為⊙O外一點(diǎn),CA,CD是⊙O的切線,A,D為切點(diǎn),連接BD,AD.若∠ACD=30°,則∠DBA的大小是( 。

A.15°
B.30°
C.60°
D.75°

【答案】D
【解析】解:連接OD,
∵CA,CD是⊙O的切線,
∴OA⊥AC,OD⊥CD,
∴∠OAC=∠ODC=90°,
∵∠ACD=30°,
∴∠AOD=360°﹣∠C﹣∠OAC﹣∠ODC=150°,
∵OB=OD,
∴∠DBA=∠ODB= ∠AOD=75°.
故選D.

首先連接OD,由CA,CD是⊙O的切線,∠ACD=30°,即可求得∠AOD的度數(shù),又由OB=OD,即可求得答案.此題考查了切線的性質(zhì)以及等腰三角形的性質(zhì).注意準(zhǔn)確作出輔助線是解此題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點(diǎn)P是⊙O外一點(diǎn),連接PB、AB,∠PBA=∠C.

(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為2 ,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖中是拋物線拱橋,P處有一照明燈,水面OA寬4m,從O、A兩處觀測P處,仰角分別為α、β,且tanα= , ,以O(shè)為原點(diǎn),OA所在直線為x軸建立直角坐標(biāo)系.

(1)求點(diǎn)P的坐標(biāo);
(2)水面上升1m,水面寬多少( 取1.41,結(jié)果精確到0.1m)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某學(xué)校開展“遠(yuǎn)是君山,磨礪意志,保護(hù)江豚,愛鳥護(hù)鳥”為主題的遠(yuǎn)足活動.已知學(xué)校與君山島相距24千米,遠(yuǎn)足服務(wù)人員騎自行車,學(xué)生步行,服務(wù)人員騎自行車的平均速度是學(xué)生步行平均速度的2.5倍,服務(wù)人員與學(xué)生同時從學(xué)校出發(fā),到達(dá)君山島時,服務(wù)人員所花時間比學(xué)生少用了3.6小時,求學(xué)生步行的平均速度是多少千米/小時.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y= 的圖象與直線y=﹣x+b都經(jīng)過點(diǎn)A(1,4),且該直線與x軸的交點(diǎn)為B.

(1)求反比例函數(shù)和直線的解析式;
(2)求△AOB的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】尤秀同學(xué)遇到了這樣一個問題:如圖1所示,已知AF,BE是△ABC的中線,且AF⊥BE,垂足為P,設(shè)BC=a,AC=b,AB=c.
求證:a2+b2=5c2
該同學(xué)仔細(xì)分析后,得到如下解題思路:
先連接EF,利用EF為△ABC的中位線得到△EPF∽△BPA,故 ,設(shè)PF=m,PE=n,用m,n把PA,PB分別表示出來,再在Rt△APE,Rt△BPF中利用勾股定理計算,消去m,n即可得證

(1)請你根據(jù)以上解題思路幫尤秀同學(xué)寫出證明過程.
(2)利用題中的結(jié)論,解答下列問題:在邊長為3的菱形ABCD中,O為對角線AC,BD的交點(diǎn),E,F(xiàn)分別為線段AO,DO的中點(diǎn),連接BE,CF并延長交于點(diǎn)M,BM,CM分別交AD于點(diǎn)G,H,如圖2所示,求MG2+MH2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)中,△ABC三個頂點(diǎn)坐標(biāo)為A(﹣ ,0)、B( ,0)、C(0,3).

(1)求△ABC內(nèi)切圓⊙D的半徑.
(2)過點(diǎn)E(0,﹣1)的直線與⊙D相切于點(diǎn)F(點(diǎn)F在第一象限),求直線EF的解析式.
(3)以(2)為條件,P為直線EF上一點(diǎn),以P為圓心,以2 為半徑作⊙P.若⊙P上存在一點(diǎn)到△ABC三個頂點(diǎn)的距離相等,求此時圓心P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計算: ;
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】海南有豐富的旅游產(chǎn)品.某校九年級(1)班的同學(xué)就部分旅游產(chǎn)品的喜愛情況對游客隨機(jī)調(diào)查,要求游客在列舉的旅游產(chǎn)品中選出喜愛的產(chǎn)品,且只能選一項(xiàng).以下是同學(xué)們整理的不完整的統(tǒng)計圖:
根據(jù)以上信息完成下列問題:
(1)請將條形統(tǒng)計圖補(bǔ)充完整;
(2)隨機(jī)調(diào)查的游客有人;在扇形統(tǒng)計圖中,A部分所占的圓心角是度;
(3)請根據(jù)調(diào)查結(jié)果估計在1500名游客中喜愛攀錦的約有人.

查看答案和解析>>

同步練習(xí)冊答案