在多項(xiàng)式a2+2b2,m2-n2,-m2+n2,-m2-n2中,能用平方差公式分解的有


  1. A.
    1個(gè)
  2. B.
    2個(gè)
  3. C.
    3個(gè)
  4. D.
    4個(gè)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,有足夠多的邊長(zhǎng)為a的小正方形(A類)、長(zhǎng)為a寬為b的長(zhǎng)方形(B類)以及邊長(zhǎng)為b的大正方形(C類),發(fā)現(xiàn)利用圖①中的三種材料各若干可以拼出一些長(zhǎng)方形來解釋某些等式.
比如圖②可以解釋為:(a+2b)(a+b)=a2+3ab+2b2
(1)取圖①中的若干個(gè)(三種圖形都要取到)拼成一個(gè)長(zhǎng)方形,使其面積為(2a+b)(a+2b),在下面虛框中畫出圖形,并根據(jù)圖形回答(2a+b)(a+2b)=
2a2+5ab+2b2
2a2+5ab+2b2

(2)若取其中的若干個(gè)(三種圖形都要取到)拼成一個(gè)長(zhǎng)方形,使其面積為a2+5ab+6b2
①你畫的圖中需要C類卡片
6
6
張.
②可將多項(xiàng)式a2+5ab+6b2分解因式為
(a+2b)(a+3b)
(a+2b)(a+3b)


(3)如圖③,大正方形的邊長(zhǎng)為m,小正方形的邊長(zhǎng)為n,若用x、y表示四個(gè)矩形的兩邊長(zhǎng)(x>y),觀察圖案,指出以下正確的關(guān)系式
ABCD
ABCD
(填寫選項(xiàng)).
A.xy=
m2-n2
4
,B.x+y=m,C.x2-y2=m•n,D.x2+y2=
m2+n2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:69領(lǐng)航·單元同步訓(xùn)練 八年級(jí)(上冊(cè)) 數(shù)學(xué)(人教版) 題型:013

在多項(xiàng)式a2+2b2,m2-n2,-m2+n2,-m2-n2中,能用平方差公式分解的有

[  ]

A.1個(gè)

B.2個(gè)

C.3個(gè)

D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀以下文字并解決問題:

     對(duì)于形如x2+2ax+a2這樣的二次三項(xiàng)式,我們可以直接用公式法把它分解成(x+a)2 的形式,但對(duì)于二次三項(xiàng)式x2+6x-27,就不能直接用公式法分解了。此時(shí),我們可以在x2+6x-27中間先加上一項(xiàng)9,使它與x2+6x的和構(gòu)成一個(gè)完全平方式,然后再減去9,則整個(gè)多項(xiàng)式的值不變。 即:x2+6x-27=(x2+6x+9)-9-27=(x+3)2-62=(x+3+6)(x+3-6)=(x+9)(x-3),

像這樣,把一個(gè)二次三項(xiàng)式變成含有完全平方式的形式的方法,叫做配方法。

(1)利用“配方法”因式分解:x2+4xy-5y2

(2) 若a+b=6, ab=5,求:①a2+b2, ②a4+b4的值

(3)如果a2+2b2+c2-2ab-6b-4c+13=0,求a+b+c的值

查看答案和解析>>

同步練習(xí)冊(cè)答案