【題目】如圖,在矩形ABCD中,AB=4,BC=2,點E是邊BC的中點,P為AB上一點,連接PE,過點E作PE的垂線交射線AD于點Q,連接PQ,設(shè)AP的長為t.
(1)用含t的代數(shù)式表示AQ的長;
(2)若△PEQ的面積等于10,求t的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,雙曲線與直線相交于點(點在第一象限),其橫坐標為2.
(1)求的值;
(2)若兩個圖像在第三象限的交點為,則點的坐標為 ;
(3)點為此反比例函數(shù)圖像上一點,其縱坐標為3,過點作,交軸于點,直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出:
(1)如圖①,在邊長為8的等邊三角形ABC中,點D,E分別在BC與AC上,且BD=2,∠ADE=60°,則線段CE的長為 .
問題
(2)如圖②,已知AP∥BQ,∠A=∠B=90°,AB=6,D是射線AP上的一個動點(不與點A重合),E是線段AB上的一個動點(不與A,B重合),EC⊥DE,交射線BQ于點C,且AD+DE=AB,求△BCE的周長.
問題解決:
(3)如圖③,在四邊形ABCD中,AB+CD=10(AB<CD),BC=6,點E為BC的中點,且∠AED=108°,則邊AD的長是否存在最大值?若存在,請求AD的最大值,并求出此時AB,CD的長度,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1:y=6x+6與x軸、y軸分別交于A、D兩點,直線l2:y=﹣x+3與x軸、y軸分別交于B、C兩點.
(1)在直線l2上找一點E,使|AE﹣DE|的值最大,并求|AE﹣DE|的最大值.
(2)以AB為邊作矩形ABMN,點C在邊MN上,動點P從B出發(fā),沿射線BM方向移動,作△PAB關(guān)于直線PA的對稱△PAB'.是否存在點P,使得△PMB'是直角三角形?若存在,請直接寫出所有符合題意的點P的坐標?若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線PQ的同側(cè)有兩點M,N,點T在直線PQ上,若∠MTP=∠NTQ,則稱點M,N為關(guān)于直線PQ的衍射點.如圖2,BD是矩形ABCD的對角線,E是邊BC延長線上的一點,且CE=BC,連接AE交CD于點F,交BD于點P,連接BF,CP.
(1)求證:點A,B是關(guān)于直線CD的衍射點.
(2)若點C,F是關(guān)于直線BD的衍射點,CP=2PF=2,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,點D,E分別在BC,AC上,且BD=CE,AD與BE相交于點F,
(1)證明:△ABD≌△BCE;
(2)證明:△ABE∽△FAE;
(3)若AF=7,DF=1,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某政府工作報告中強調(diào),2019年著重推進鄉(xiāng)村振興戰(zhàn)略,做優(yōu)做響湘蓮等特色農(nóng)產(chǎn)品品牌.小亮調(diào)查了一家湘潭特產(chǎn)店兩種湘蓮禮盒一個月的銷售情況,A種湘蓮禮盒進價72元/盒,售價120元/盒,B種湘蓮禮盒進價40元/盒,售價80元/盒,這兩種湘蓮禮盒這個月平均每天的銷售總額為2800元,平均每天的總利潤為1280元.
(1)求該店平均每天銷售這兩種湘蓮禮盒各多少盒?
(2)小亮調(diào)査發(fā)現(xiàn),種湘蓮禮盒售價每降3元可多賣1盒.若種湘蓮禮盒的售價和銷量不變,當種湘蓮禮盒降價多少元/盒時,這兩種湘蓮禮盒平均每天的總利潤最大,最大是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點D是AB的中點,以CD為直徑作⊙O,⊙O分別與AC,BC交于點E,F(xiàn),過點F作⊙O的切線FG,交AB于點G,則FG的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com