【題目】如圖,拋物線軸于,兩點,交軸于點.直線經(jīng)過點,.

1)求拋物線的解析式;

2)點是直線上方拋物線上一動點,設點的橫坐標為.

①求面積最大值和此時的值;

是直線上一動點,是否存在點,使以、、、為頂點的四邊形是平行四邊形,若存在,直接寫出點的坐標.

【答案】1;(2)①當,② ,

【解析】

1)求出點B、C的坐標,將點B、C的坐標代入拋物線表達式,即可求解;
2)①過點Py軸的平行線交直線BC于點H,根據(jù)PBC面積=×PH×OB,利用二次函數(shù)的性質即可求解;②分AB是平行四邊形的邊,AB是平行四邊形的對角線兩種情況,分別求解即可.

解:(1)∵直線經(jīng)過點BC,

∴點B、C的坐標分別為:(4,0)、(0,2),

將點BC的坐標代入拋物線表達式,得,

解得:,

∴拋物線的表達式為:

2)①過點Py軸的平行線交直線BC于點H

則點Pm),點Hm),

PBC面積=×PH×OB×4×)=2m28m2(m-2)2+8,

∴當m2時,面積存在最大值8

②設點Pm,),點Qn,),

,解得:

∴點A的坐標為:(,0),

AB是平行四邊形的邊時,點A向右平移個單位得到B,

同樣點PQ)向右平移個單位得到QP),

n,,

解得:m(舍去)或(舍去)或,

∴此時P點坐標為;

AB是平行四邊形的對角線時,

由中點公式得:mn,,

解得:m(重復,舍去);

綜上點P的坐標為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx+3x軸交于A(﹣1,0)和B30)兩點,與y軸交于點C,點D是該拋物線的頂點,分別連接AC、CD、AD

1)求拋物線的函數(shù)解析式以及頂點D的坐標;

2)在拋物線上取一點P(不與點C重合)、并分別連接PA、PD,當△PAD的面積與△ACD的面積相等時,求點P的坐標:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,BC+,點D為邊AB上一點,連接CD.將ACD沿直線CD翻折至ECDCE恰好過AB的中點F.連接AECD的延長線于點H,若∠ACD15°,則DH的長為( 。

A.B.C.D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,ABAC,∠BAC90°,D為平面內的一點.

1)如圖1,當點D在邊BC上時,且∠BAD30°,求證:ADBD

2)如圖2,當點DABC的外部,且滿足∠BDC﹣∠ADC45°,求證:BDAD

3)如圖3,若AB4,當D、E分別為AB、AC的中點,把DAEA點順時針旋轉,設旋轉角為α0α≤180°),直線BDCE的交點為P,連接PA,直接寫出PAC面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了解學生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目最喜愛的情況,隨機調查了若干名學生,根據(jù)調查數(shù)據(jù)進行整理,繪制了如下的不完整統(tǒng)計圖:

請你根據(jù)以上的信息,回答下列問題:

1 本次共調查了_____名學生,其中最喜愛戲曲的有_____人;在扇形統(tǒng)計圖中,最喜愛體育的對應扇形的圓心角大小是______;

2 根據(jù)以上統(tǒng)計分析,估計該校2000名學生中最喜愛新聞的人數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某坦克部隊需要經(jīng)過一個拱橋(如圖所示),拱橋的輪廓是拋物線形,拱高OC6m,跨度AB20m,有5根支柱:AGMN、CDEF、BH,相鄰兩支柱的距離均為5m

1)以AB的中點為原點,AB所在直線為x軸,支柱CD所在直線為y軸,建立平面直角坐標系,求拋物線的解析式;

2)若支柱每米造價為2萬元,求5根支柱的總造價;

3)拱橋下面是雙向行車道(正中間是一條寬2m的隔離帶),其中的一條行車道是坦克的行進方向,現(xiàn)每輛坦克長4m,寬2m,高3m,行駛速度為24km/h,坦克允許并排行駛,坦克前后左右距離忽略不計,試問120輛該型號坦克從剛開始進入到全部通過這座長1000m的拱橋隧道所需最短時間為多少分鐘?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“佳佳商場”在銷售某種進貨價為20元/件的商品時,以30元/件售出,每天能售出100件.調查表明:這種商品的售價每上漲1元/件,其銷售量就將減少2件.

(1)為了實現(xiàn)每天1600元的銷售利潤,“佳佳商場”應將這種商品的售價定為多少?

(2)物價局規(guī)定該商品的售價不能超過40元/件,“佳佳商場”為了獲得最大的利潤,應將該商品售價定為多少?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在口ABCD,ECD的延長線上一點,BEAD交于點F,DE= CD

(1)求證:ABF∽△CEB

(2)DEF的面積為2,CEB的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的布袋里裝有個標號分別為的小球,這些球除標號外無其它差別.從布袋里隨機取出一個小球,記下標號為,再從剩下的個小球中隨機取出一個小球,記下標號為記點的坐標為

(1)請用畫樹形圖或列表的方法寫出點所有可能的坐標;

(2)求兩次取出的小球標號之和大于的概率;

(3)求點落在直線上的概率.

查看答案和解析>>

同步練習冊答案