【題目】如圖四邊形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E為CD上一點(diǎn),且∠BAE=45°.若CD=4,則△ABE的面積為( )
A. B. C. D.
【答案】D
【解析】解:如圖取CD的中點(diǎn)F,連接BF延長(zhǎng)BF交AD的延長(zhǎng)線于G,作FH⊥AB于H,EK⊥AB于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,FC=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥BG,∠ABF=∠G=∠CBF,∵FH⊥BA,FC⊥BC,∴FH=FC,易證△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AB,由題意AD=DC=4,設(shè)BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,設(shè)AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②,由①②可得y=,∴S△ABE=×5×=,故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AE與CD相交于點(diǎn)B,射線BF平分∠ABC,射線BG在∠ABD內(nèi),
(1)若∠DBE的補(bǔ)角是它的余角的3倍,求∠DBE的度數(shù);
(2)在(1)的件下,若∠DBG=∠ABG﹣33°,求∠ABG的度數(shù);
(3)若∠FBG=100°,求∠ABG和∠DBG的度數(shù)的差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P的坐標(biāo)為(a﹣1,5﹣2a),且它到兩個(gè)坐標(biāo)軸的距離相等,則點(diǎn)P的坐標(biāo)為( )
A.(3,3)B.(3,﹣3)C.(1,﹣1)D.(1,1)或(3,﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)角的余角的度數(shù)是 30°15′,那么這個(gè)角的補(bǔ)角的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩車(chē)從A城出發(fā)勻速行駛至B城.在整個(gè)行駛過(guò)程中,甲、乙兩車(chē)離開(kāi)A城的距離y(千米)與甲車(chē)行駛的時(shí)間t(小時(shí))之間的函數(shù)關(guān)系如圖所示.則下列結(jié)論:
①A,B兩城相距300千米;
②乙車(chē)比甲車(chē)晚出發(fā)1小時(shí),卻早到1小時(shí);
③乙車(chē)出發(fā)后2.5小時(shí)追上甲車(chē);
④當(dāng)甲、乙兩車(chē)相距50千米時(shí),t=或.
其中正確的結(jié)論有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:線段、、;
求作:△ABC,使, , ;
【答案】答案見(jiàn)解析
【解析】試題分析:先畫(huà)出與相等的角,再畫(huà)出的長(zhǎng),連接,則即為所求三角形.
試題解析:如圖所示:①先畫(huà)射線BC,
②以α的頂點(diǎn)為圓心,任意長(zhǎng)為半徑畫(huà)弧,分別交α的兩邊交于為A′,C′;
③以相同長(zhǎng)度為半徑,B為圓心,畫(huà)弧,交BC于點(diǎn)F,以F為圓心,C′A′為半徑畫(huà)弧,交于點(diǎn)E;
④在BF上取點(diǎn)C,使CB=a,以B為圓心,c為半徑畫(huà)圓交BE的延長(zhǎng)線于點(diǎn)A,連接AC,
結(jié)論:△ABC即為所求三角形.
【題型】解答題
【結(jié)束】
15
【題目】已知:線段, ,求作: ,使, .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)在如圖所示的平面直角坐標(biāo)系中表示下面各點(diǎn):A(0,3);B(5,0);C(3,-5);D(-3,-5);E(3,5);
(2)連接CE,則直線CE與y軸是什么位置關(guān)系?
(3)點(diǎn)D分別到x、y軸的距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,我們定義直線y=ax﹣a為拋物線(a、b、c為常數(shù),a≠0)的“夢(mèng)想直線”;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其“夢(mèng)想三角形”.
已知拋物線與其“夢(mèng)想直線”交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C.
(1)填空:該拋物線的“夢(mèng)想直線”的解析式為 ,點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;
(2)如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將△ACM以AM所在直線為對(duì)稱軸翻折,點(diǎn)C的對(duì)稱點(diǎn)為N,若△AMN為該拋物線的“夢(mèng)想三角形”,求點(diǎn)N的坐標(biāo);
(3)當(dāng)點(diǎn)E在拋物線的對(duì)稱軸上運(yùn)動(dòng)時(shí),在該拋物線的“夢(mèng)想直線”上,是否存在點(diǎn)F,使得以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)E、F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com