【題目】如圖,有長為的籬笆,一面利用墻(墻的最大可用長度為),圍成中間隔有一道籬笆(平行于)的矩形花圃.設(shè)花圃的一邊為.
則________(用含的代數(shù)式表示),矩形的面積________(用含的代數(shù)式表示);
如果要圍成面積為的花圃,的長是多少?
將中表示矩形的面積的代數(shù)式通過配方,問:當(dāng)等于多少時,能夠使矩形花圃面積最大,最大的面積為多少?
【答案】(1),;(2)7;(3)當(dāng)AB=5時,矩形花圃ABCD面積最大,最大面積為75m2.
【解析】
(1)用總長減去與墻垂直的三條籬笆的長度的和即為BC的長,然后利用長乘以寬即可求得面積;
(2)根據(jù)面積為63列出一元二次方程求解即可;
(3)配方后即可確定面積的最值及AB的長.
(1)BC=30﹣3x,矩形ABCD的面積=﹣3x2+30x;
(2)當(dāng)矩形ABCD的面積為63時,﹣3x2+30x=63,解此方程得:x1=7,x2=3,當(dāng)x=7時,30﹣3x=9<20,符合題意;
當(dāng)x=3時,30﹣3x=21>20,不符合題意,舍去;
∴當(dāng)AB的長為7m時,花圃的面積為63m2.
(3)矩形ABCD的面積=﹣3x2+30x=﹣3(x﹣5)2+75.
∵(x﹣5)2≥0,∴﹣3(x﹣5)2≤0,∴﹣3(x﹣5)2+75≤75.
∵0<30﹣3x≤20即:,∴當(dāng)x=5時,滿足.
即當(dāng)AB=5時,矩形花圃ABCD面積最大,最大面積為75m2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l:y=-x+4與x軸,y軸分別交于A,B兩點,點P(m,5)為直線l上一點.動點C從原點O出發(fā),以每秒1個單位長度的速度沿y軸正方向運動.設(shè)點C的運動時間為t秒.
(1)①m= ;
②當(dāng)t= 時,△PBC的面積是1.
(2)請寫出點C在運動過程中,△PBC的面積S與t之間的函數(shù)關(guān)系式;
(3)點D、E分別是直線AB、x軸上的動點,當(dāng)點C運動到線段QB的中點時(如右圖),△CDE周長的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示:拋物線交坐標(biāo)軸于、、三點,是拋物線的頂點,在對稱軸上,在坐標(biāo)軸上.以下結(jié)論:
①存在點,使是等腰直角三角形;②的最小值是;③的最大值是;④若與相似,則的坐標(biāo)恰有兩個.
其中正確的是________(只填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,下列結(jié)論錯誤的是( )
A. b2-4ac>0 B. a-b+c<0 C. abc<0 D. 2a+b>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,在△ ABC中,∠ACB = 2∠B, ∠BAC的平分線AO交BC于點D,點H為AO上一動點,過點H作直線l⊥ AO于H,分別交直線AB、AC、BC于點N、E、M
(1)當(dāng)直線l經(jīng)過點C時(如圖 2),求證:NH = CH;
(2)當(dāng)M是BC中點時,寫出CE和CD之間的等量關(guān)系,并加以證明;
(3)請直接寫出BN、CE、CD之間的等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC=16 cm,AD為BC邊上的高,動點P從點A出發(fā),沿A→D方向以 cm/s的速度向點D運動,過P點作矩形PDFE(E點在AC上),設(shè)△ABP的面積為S1,矩形PDFE的面積為S2,運動時間為t秒(0<t<8).
(1)經(jīng)過幾秒鐘后,S1=S2?
(2)經(jīng)過幾秒鐘后,S1+S2最大?并求出這個最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實數(shù)根,下列判斷正確的是( )
A. 1一定不是關(guān)于x的方程x2+bx+a=0的根
B. 0一定不是關(guān)于x的方程x2+bx+a=0的根
C. 1和﹣1都是關(guān)于x的方程x2+bx+a=0的根
D. 1和﹣1不都是關(guān)于x的方程x2+bx+a=0的根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果經(jīng)過三角形一個頂點的線段把這個三角形分成兩個小三角形,其中一個三角形是等腰三角形,另外一個三角形和原三角形的三個內(nèi)角分別相等,那么這條線段稱為原三角形的“和諧分割線”,例如:如圖1,等腰直角三角形斜邊上的中線就是一條“和諧分割線”.
(1)判斷(對的打“√”,錯的打“×”)
①等邊三角形存在“和諧分割線”( )
②如果三角形中有一個角是另一個角的兩倍,則這個三角形必存在“和諧分割線”( )
(2)如圖2,Rt△ABC,∠C=90°,∠B=30°,BC=6,請用尺規(guī)畫出“和諧分割線”,并計算“和諧分割線”的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com