【題目】定義:如果經(jīng)過三角形一個(gè)頂點(diǎn)的線段把這個(gè)三角形分成兩個(gè)小三角形,其中一個(gè)三角形是等腰三角形,另外一個(gè)三角形和原三角形的三個(gè)內(nèi)角分別相等,那么這條線段稱為原三角形的和諧分割線,例如:如圖1,等腰直角三角形斜邊上的中線就是一條和諧分割線”.

1)判斷(對的打“√”,錯(cuò)的打“×”

①等邊三角形存在和諧分割線   

②如果三角形中有一個(gè)角是另一個(gè)角的兩倍,則這個(gè)三角形必存在和諧分割線   

2)如圖2RtABC,∠C90°,∠B30°BC6,請用尺規(guī)畫出和諧分割線,并計(jì)算和諧分割線的長度.

【答案】1)①×,②√;(2)和諧分割線”的長度為4

【解析】

1)根據(jù)和諧分割線的定義即可判斷;

2)如圖作∠CAB的平分線,只要證明線段AD和諧分割線即可,并根據(jù)直角三角形30°角所對邊是斜邊的一半和CD+BD=BC=6,求出CD的長度即可.

1)①因?yàn)檫^等邊三角形任意一頂點(diǎn),分割的兩個(gè)三角形都有一個(gè)角小于60°,即不可能是等邊三角形,故等邊三角形不存在“和諧分割線”,不正確,是假命題;

②如果三角形中有一個(gè)角是另一個(gè)角的兩倍,

則這個(gè)三角形必存在“和諧分割線”,理由如下:

如圖,在△ABC中,∠ABC=2∠C,作∠ABC的平分線交AC于D.

∵BD平分∠ABC

∴∠ABD=∠DBC=,

∵∠ABC=2∠C

∴∠ABD=∠DBC=∠C,

∴BD=DC,△BDC為等腰三角形

∠ADB=∠DBC+∠C=2∠C=∠ABC.

故BD為△ABC的和諧分割線.

正確,是真命題,

故答案為:×,√;

2)如圖2,作∠CAB的平分線AD,

∵∠C90°,∠B30°,

∴∠DAB=∠B30°,

DADB

∴△ADB是等腰三角形,且∠CAD=∠DAB=∠B,

∴∠ADC=∠B+BAD=∠CAD+BAD=∠BAC

∴線段AD是△ABC的“和諧分割線”,

設(shè)CDx,則BD6x,

,

x2,

ADBD624

即和諧分割線”的長度為4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O△ABC內(nèi)一點(diǎn),∠A=80°,BO、CO分別是∠ABC∠ACB的角平分線,則∠BOC等于(  )

A. 140° B. 120° C. 130° D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有長為的籬笆,一面利用墻(墻的最大可用長度為),圍成中間隔有一道籬笆(平行于)的矩形花圃.設(shè)花圃的一邊

________(用含的代數(shù)式表示),矩形的面積________(用含的代數(shù)式表示);

如果要圍成面積為的花圃,的長是多少?

中表示矩形的面積的代數(shù)式通過配方,問:當(dāng)等于多少時(shí),能夠使矩形花圃面積最大,最大的面積為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,等邊中,點(diǎn)分別在、上,,連、

1)求證:;

2)如圖2,延長至點(diǎn),使得,連,試判斷的形狀,并說明理由;

3)在(2)的條件下,連.若,則______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c過點(diǎn)A(0,2).

(1)若點(diǎn)(﹣,0)也在該拋物線上,求a,b滿足的關(guān)系式;

(2)若該拋物線上任意不同兩點(diǎn)M(x1,y1),N(x2,y2)都滿足:當(dāng)x1<x2<0時(shí),(x1﹣x2)(y1﹣y2)>0;當(dāng)0<x1<x2時(shí),(x1﹣x2)(y1﹣y2)<0.以原點(diǎn)O為心,OA為半徑的圓與拋物線的另兩個(gè)交點(diǎn)為B,C,且△ABC有一個(gè)內(nèi)角為60°.

求拋物線的解析式;

若點(diǎn)P與點(diǎn)O關(guān)于點(diǎn)A對稱,且O,M,N三點(diǎn)共線,求證:PA平分∠MPN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,湛河兩岸ABEF平行小亮同學(xué)假期在湛河邊A點(diǎn)處,測得對岸河邊C處視線與湛河岸的夾角∠CAB=37°沿河岸前行140米到點(diǎn)B,測得對岸C處的視線與湛河岸夾角∠CBA=45°.問湛河的寬度約多少米?(參考數(shù)據(jù)sin37°≈0.60,cos37°=0.80,tan37°=0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰△ABC的底邊BC=20cmD是腰AB上一點(diǎn),且CD=16cm,BD=12cm,

1)求△ABCBC邊上的高

2)求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】11·西寧)西寧中心廣場有各種音樂噴泉,其中一個(gè)噴水管的最大高度為3米,此時(shí)距噴水管的水平距離為米,在如圖3所示的坐標(biāo)系中,這個(gè)噴泉的函數(shù)關(guān)系式是

A. y=-(x)x23 B. y=-3(x)x23

C. y=-12(x)x23 D. y=-12(x)x23

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)Ax軸的正半軸上,點(diǎn)Cy軸的正半軸上,OA=10,OC=8.在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,求(1)求直線AE的函數(shù)表達(dá)式;(2)求D點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案