精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在邊長為4的正方形ABCD中,動點P從A點出發(fā),以每秒1個單位長度的速度沿AB向B點運動,同時動點Q從B點出發(fā),以每秒2個單位長度的速度沿BC→CD方向運動,當P運動到B點時,P、Q兩點同時停止運動.設P點運動的時間為t,△APQ的面積為S,則S與t的函數關系的圖象是( 。

A.
B.
C.
D.

【答案】D
【解析】解:①點P在AB上運動,點Q在BC上運動,此時AP=t,QB=2t,
故可得S= APQB=t2 , 函數圖象為拋物線;
②點P在AB上運動,點Q在CD上運動,
此時AP=t,△APQ底邊AP上的高保持不變,為正方形的邊長4,
故可得S= AP×4=2t,函數圖象為一次函數.
綜上可得總過程的函數圖象,先是拋物線,然后是一次增函數.
故選:D.
【考點精析】解答此題的關鍵在于理解函數的圖象的相關知識,掌握函數的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數的一對對應值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應的函數值.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是弦.
(1)請你按下面步驟畫圖(畫圖或作輔助線時先使用鉛筆畫出,確定后必須使用黑色字跡的簽字筆描黑); 第一步,過點A作∠BAC的角平分線,交⊙O于點D;
第二步,過點D作AC的垂線,交AC的延長線于點E.
第三步,連接BD.
(2)求證:AD2=AEAB;
(3)連接EO,交AD于點F,若5AC=3AB,求 的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC和△ADE均為等邊三角形,BD、CE交于點F.

(1)求證:BD=CE;(2)求銳角∠BFC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在數軸上點A表示的有理數為﹣6,點B表示的有理數為6,點P從點A出發(fā)以每秒4個單位長度的速度在數軸上由AB運動,當點P到達點B后立即返回,仍然以每秒4個單位長度的速度運動至點A停止運動,設運動時間為t(單位:秒).

(1)求t=1時點P表示的有理數;

(2)求點P與點B重合時的t值;

(3)在點P沿數軸由點A到點B再回到點A的運動過程中,求點P與點A的距離(用含t的代數式表示);

(4)當點P表示的有理數與原點的距離是2個單位長度時,請求出所有滿足條件的t值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,B、C、E三點在同一條直線上,ACDE,AC=CE,ACD=B.

(1)求證:BC=DE

(2)若∠A=40°,求∠BCD的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,已知D,E分別為邊BC,AD的中點,且SABC=4 cm2,則△BEC的面積為(  )

A. 2 cm2 B. 1 cm2 C. 0.5 cm2 D. 0.25 cm2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,點O為直線AB上一點,過O點作射線OC,使∠AOC:∠BOC=1:2,將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角板繞點O按逆時針方向旋轉至圖2的位置,使得ON落在射線OB上,此時三角板旋轉的角度為   度;

(2)繼續(xù)將圖2中的三角板繞點O按逆時針方向旋轉至圖3的位置,使得ON在∠AOC的內部.試探究∠AOM與∠NOC之間滿足什么等量關系,并說明理由;

(3)在上述直角三角板從圖1逆時針旋轉到圖3的位置的過程中,若三角板繞點O按15°每秒的速度旋轉,當直角三角板的直角邊ON所在直線恰好平分∠AOC時,求此時三角板繞點O的運動時間t的值。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】仔細閱讀下列材料.

分數均可化為有限小數或無限循環(huán)小數,反之,有限小數或無限小數均可化為分數”.

例如:=1÷4=0.25;==8÷5=1.6;=1÷3=,反之,0.25== ;1.6===.那么,怎么化成分數呢?

解:×10=3+, ∴不妨設=x,則上式變?yōu)?/span>10x=3+x,解得x=,即=;

=,設=x,則上式變?yōu)?/span>100x=2+x,解得x=,

==1+x=1+=

將分數化為小數:=______,=_______;

將小數化為分數:=______,=_______;

將小數化為分數,需要寫出推理過程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,拋物線y=ax2+bx+c(a≠0)的頂點坐標為點A(﹣2,3),且拋物線y=ax2+bx+c與y軸交于點B(0,2).

(1)求該拋物線的解析式;
(2)是否在x軸上存在點P使△PAB為等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)若點P是x軸上任意一點,則當PA﹣PB最大時,求點P的坐標.

查看答案和解析>>

同步練習冊答案