【題目】如圖,在△ABC中,AB=AC,⊙O是△ABC的外接圓,AE⊥AB交BC于點D,交⊙O于點E,F在DA的延長線上,且AF=AD.若AF=3,tan∠ABD=,求⊙O的直徑.
【答案】
【解析】試題分析:如圖,連接BE.利用等腰三角形“三線合一”的性質(zhì)得到BF=BD;然后根據(jù)圓周角定理推知∠FBA=∠ABC=∠C=∠E,BE是⊙O的直徑.利用銳角三角函數(shù)的定義可以來求BE的長度.
試題解析:
如圖,連接BE.
∵AF=AD,AB⊥EF,
∴BF=BD.是直徑
∵AB=AC,
∴∠FBA=∠ABC=∠C=∠E.
∵tan∠ABD=,
∴tanE=tan∠FBA=.
在Rt△ABF中,∠BAF=90°.
∵tan∠FBA== ,AF=3,
∴AB=4.
∵∠BAE=90°,
∴BE是⊙O的直徑.
∵tanE=tan∠FBA= ,AB=4,
∴設AB=3x,AE=4x,
∴BE=5x,
∵3x=4,
∴BE=5x=,
即⊙O的直徑是.
科目:初中數(shù)學 來源: 題型:
【題目】某種油菜籽在相同條件下的發(fā)芽實驗結(jié)果如表:
(1)a= ,b= ;
(2)這種油菜籽發(fā)芽的概率估計值是多少?請簡要說明理由;
(3)如果該種油菜籽發(fā)芽后的成秧率為90%,則在相同條件下用10000粒該種油菜籽可得到油菜秧苗多少棵?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與軸交于A、B兩點(點A在點B的左側(cè)),與軸交于點C,頂點為D,對稱軸與軸交于點E,直線CE交拋物線于點F(異于點C),直線CD交軸交于點G.
(1)如圖①,求直線CE的解析式和頂點D的坐標;
(2)如圖①,點P為直線CF上方拋物線上一點,連接PC、PF,當△PCF的面積最大時,點M是過P垂直于軸的直線l上一點,點N是拋物線對稱軸上一點,求的最小值;
(3)如圖②,過點D作交軸于點I,將△GDI沿射線GB方向平移至處,將繞點逆時針旋轉(zhuǎn),當旋轉(zhuǎn)到一定度數(shù)時,點會與點I重合,記旋轉(zhuǎn)過程中的為,若在整個旋轉(zhuǎn)過程中,直線G’’I’’分別交x軸和直線GD’于點K、L兩點,是否存在這樣的K、L,使△GKL為以∠LGK為底角的等腰三角形?若存在,求此時GL的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子中只裝有2個白色圍棋子和1個黑色圍棋子,圍棋子除顏色外其余均相同.從這個盒子中隨機地摸出1個圍棋子,記下顏色后放回,攪勻后再隨機地摸出1個圍棋子記下顏色.請用畫樹狀圖(或列表)的方法,求兩次摸出的圍棋子顏色都是白色的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)(+17)+(-12);
(2)10+(―)―6―(―0.25);
(3)()×48 ;
(4)|-5-4|-5×(-2)2-1÷(-)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩根木條,一根長20cm,另一根長24cm,將它們一端重合且放在同一條直線上,此時兩根木條的中點之間的距離為( )
A. 2cm B. 4cm C. 2cm或22cm D. 4cm或44cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2014河南21題)某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.
(1)求每臺A型電腦和B型電腦的銷售利潤;
(2)該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍.設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.
①求y關于x的函數(shù)關系式;
②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?
(3)實際進貨時,廠家對A型電腦出廠價下降元,且限定商店最多購進A型電腦70臺.若商店保持兩種電腦的售價不變,請你根據(jù)以上信息及(2)中條件,設計出使這100臺電腦銷售總利潤最大的進貨方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰△ABC,AB=BC,以AB為直徑的圓交AC于點D,過點D的⊙O的切線交BC于點E,若CD=5,CE=4,則⊙O的半徑是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣4,3),B(﹣3,1),C(﹣1,3).
(1)請按下列要求畫圖:
①平移△ABC,使點A的對應點A1的坐標為(﹣4,﹣3),請畫出平移后的△A1B1C1;
②△A2B2C2與△ABC關于原點O中心對稱,畫出△A2B2C2.
(2)若將△A1B1C1繞點M旋轉(zhuǎn)可得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心M點的坐標 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com