【題目】如圖,在ABC中,AB=AC,OABC的外接圓,AEABBC于點D,交⊙O于點E,FDA的延長線上,且AF=AD.若AF=3tanABD=,求⊙O的直徑.

【答案】

【解析】試題分析:如圖,連接BE.利用等腰三角形三線合一的性質(zhì)得到BF=BD;然后根據(jù)圓周角定理推知∠FBA=ABC=C=E,BE是⊙O的直徑.利用銳角三角函數(shù)的定義可以來求BE的長度.

試題解析:

如圖,連接BE

AF=AD,ABEF,

BF=BD.是直徑

AB=AC

∴∠FBA=ABC=C=E

tanABD=,

tanE=tanFBA=

RtABF中,∠BAF=90°

tanFBA== ,AF=3,

AB=4

∵∠BAE=90°,

BE是⊙O的直徑.

tanE=tanFBA= AB=4,

∴設AB=3x,AE=4x,

BE=5x,

3x=4,

BE=5x=,

即⊙O的直徑是

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某種油菜籽在相同條件下的發(fā)芽實驗結(jié)果如表:

1a ,b ;

2)這種油菜籽發(fā)芽的概率估計值是多少?請簡要說明理由;

3)如果該種油菜籽發(fā)芽后的成秧率為90%,則在相同條件下用10000粒該種油菜籽可得到油菜秧苗多少棵?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線軸交于A、B兩點(點A在點B的左側(cè)),與軸交于點C,頂點為D,對稱軸與軸交于點E,直線CE交拋物線于點F(異于點C),直線CD軸交于點G

1)如圖①,求直線CE的解析式和頂點D的坐標;

2)如圖①,點P為直線CF上方拋物線上一點,連接PCPF,當PCF的面積最大時,點M是過P垂直于軸的直線l上一點,點N是拋物線對稱軸上一點,求的最小值;

3)如圖②,過點D軸于點I,將GDI沿射線GB方向平移至處,將繞點逆時針旋轉(zhuǎn),當旋轉(zhuǎn)到一定度數(shù)時,點會與點I重合,記旋轉(zhuǎn)過程中的,若在整個旋轉(zhuǎn)過程中,直線G’’I’’分別交x軸和直線GD于點K、L兩點,是否存在這樣的K、L,使GKL為以∠LGK為底角的等腰三角形?若存在,求此時GL的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的盒子中只裝有2個白色圍棋子和1個黑色圍棋子,圍棋子除顏色外其余均相同.從這個盒子中隨機地摸出1個圍棋子,記下顏色后放回,攪勻后再隨機地摸出1個圍棋子記下顏色.請用畫樹狀圖(或列表)的方法,求兩次摸出的圍棋子顏色都是白色的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1)(+17)+(-12);

210+(―)―6―(―0.25);

3)(48 ;

4)|-54|-5×(-221÷(-

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩根木條,一根長20cm,另一根長24cm,將它們一端重合且放在同一條直線上,此時兩根木條的中點之間的距離為(  )

A. 2cm B. 4cm C. 2cm22cm D. 4cm44cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2014河南21題)某商店銷售10A型和20B型電腦的利潤為4000元,銷售20A型和10B型電腦的利潤為3500元.

1)求每臺A型電腦和B型電腦的銷售利潤;

2)該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍.設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.

①求y關于x的函數(shù)關系式;

②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?

3)實際進貨時,廠家對A型電腦出廠價下降元,且限定商店最多購進A型電腦70臺.若商店保持兩種電腦的售價不變,請你根據(jù)以上信息及(2)中條件,設計出使這100臺電腦銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等腰ABCAB=BC,以AB為直徑的圓交AC于點D,過點D的⊙O的切線交BC于點E,若CD=5CE=4,則⊙O的半徑是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣4,3),B(﹣3,1),C(﹣1,3).

1)請按下列要求畫圖:

平移△ABC,使點A的對應點A1的坐標為(﹣4,﹣3),請畫出平移后的△A1B1C1;

A2B2C2與△ABC關于原點O中心對稱,畫出△A2B2C2

2)若將△A1B1C1繞點M旋轉(zhuǎn)可得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心M點的坐標   

查看答案和解析>>

同步練習冊答案