【題目】解方程:
(1)用開平方法解方程:
(2)用配方法解方程:x2 —4x+1=0
(3)用公式法解方程:3x2+5(2x+1)=0
(4)用因式分解法解方程:3(x-5)2=2(5-x)
(5)解方程:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中的點P和圖形M,給出如下的定義:若在圖形M存在一點Q,使得P、Q兩點間的距離小于或等于1,則稱P為圖形M的關(guān)聯(lián)點.
(1)當(dāng)⊙O的半徑為2時,
①在點 中,⊙O的關(guān)聯(lián)點是_______________.
②點P在直線y=-x上,若P為⊙O 的關(guān)聯(lián)點,求點P的橫坐標(biāo)的取值范圍.
(2)⊙C 的圓心在x軸上,半徑為2,直線y=-x+1與x軸、y軸交于點A、B.若線段AB上的所有點都是⊙C的關(guān)聯(lián)點,直接寫出圓心C的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一元二次方程滿足,那么我們稱這個方程為“鳳凰”方程.已知是“鳳凰”方程,且有兩個相等的實數(shù)根,則下列結(jié)論正確的是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=3,BC=4.以點C為圓心,r為半徑的圓與邊AB(邊AB為線段)僅有一個公共點,則r的值為( 。
A.r≥B.r=3或r=4C.≤r≤4 D.r=或3<r≤4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB內(nèi)接于圓O,AB為直徑,CD⊥AB與點D,E為圓外一點,EO⊥AB,與BC交于點G,與圓O交于點F,連接EC,且EG=EC.
(1)求證:EC是圓O的切線;
(2)當(dāng)∠ABC=22.5°時,連接CF.
①求證:AC=CF;
②若AD=1,求線段FG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,點在以為直徑的半圓內(nèi).請僅用無刻度的直尺分別按下列要求畫圖(保留畫圖痕跡).
(1)在圖1中作弦,使;
(2)在圖2中以為邊作一個45°的圓周角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天貓店銷售某種規(guī)格學(xué)生軟式排球,成本為每個30元.以往銷售大數(shù)據(jù)分析表明:當(dāng)每只售價為40元時,平均每月售出600個;若售價每上漲1元,其月銷售量就減少20個,若售價每下降1元,其月銷售量就增加200個.
(1)若售價上漲m元,每月能售出 個排球(用m的代數(shù)式表示).
(2)為迎接“雙十一”,該天貓店在10月底備貨1300個該規(guī)格的排球,并決定整個11月份進(jìn)行降價促銷,問售價定為多少元時,能使11月份這種規(guī)格排球獲利恰好為8400元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.動點P從點A開始沿折線AC-CB-BA運動,點P在AC,CB,BA邊上運動的速度分別為每秒3,4,5個單位.直線l從與AC重合的位置開始,以每秒個單位的速度沿CB方向移動,移動過程中保持l∥AC,且分別與CB,AB邊交于E,F(xiàn)兩點,點P與直線l同時出發(fā),設(shè)運動的時間為t秒,當(dāng)點P第一次回到點A時,點P和直線l同時停止運動.
(1)當(dāng)t=5秒時,點P走過的路徑長為_________;當(dāng)t=_________秒時,點P與點E重合;
(2)當(dāng)點P在AC邊上運動時,連結(jié)PE,并過點E作AB的垂線,垂足為H. 若以C、P、E為頂點的三角形與△EFH相似,試求線段EH的值;
(3)當(dāng)點P在折線AC-CB-BA上運動時,作點P關(guān)于直線EF的對稱點Q.在運動過程中,若形成的四邊形PEQF為菱形,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點D在⊙O外,∠BAD的平分線與⊙O交于點C,連接BC、CD,且∠D=90°.
(1)求證:CD是⊙O的切線;
(2)若∠DCA=60°,BC=3,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com