【題目】在平面直角坐標(biāo)系中的點P和圖形M,給出如下的定義:若在圖形M存在一點Q,使得P、Q兩點間的距離小于或等于1,則稱P為圖形M的關(guān)聯(lián)點.
(1)當(dāng)⊙O的半徑為2時,
①在點 中,⊙O的關(guān)聯(lián)點是_______________.
②點P在直線y=-x上,若P為⊙O 的關(guān)聯(lián)點,求點P的橫坐標(biāo)的取值范圍.
(2)⊙C 的圓心在x軸上,半徑為2,直線y=-x+1與x軸、y軸交于點A、B.若線段AB上的所有點都是⊙C的關(guān)聯(lián)點,直接寫出圓心C的橫坐標(biāo)的取值范圍.
【答案】(1)①P2、P3,②-≤x≤-或 ≤x≤;(2)-2≤x≤1或2≤x≤2 .
【解析】
試題(1)①由題意得,P只需在以O(shè)為圓心,半徑為1和3兩圓之間即可,由 的值可知為⊙O的關(guān)聯(lián)點;②滿足條件的P只需在以O為圓心,半徑為1和3兩圓之間即可,所以P橫坐標(biāo)范圍是- ≤x≤- 或 ≤x≤;
(2).分四種情況討論即可,當(dāng)圓過點A, CA=3時;當(dāng)圓與小圓相切時;當(dāng)圓過點 A,AC=1時;當(dāng)圓過點 B 時,即可得出.
試題解析:
(1),
點 與⊙的最小距離為 ,點 與⊙的最小距離為1,點與⊙的最小距離為,
∴⊙的關(guān)聯(lián)點為和.
②根據(jù)定義分析,可得當(dāng)直線y=-x上的點P到原點的距離在1到3之間時符合題意;
∴ 設(shè)點P的坐標(biāo)為P (x ,-x) ,
當(dāng)OP=1時,由距離公式可得,OP= ,解得 ,當(dāng)OP=3時,由距離公式可得,OP= ,,解得,
∴ 點的橫坐標(biāo)的取值范圍為
(2)∵y=-x+1與軸、軸的交點分別為A、B兩點,∴ 令y=0得,-x+1=0,解得x=1,
令得x=0得,y=0,
∴A(1,0) ,B (0,1) ,
分析得:
如圖1,當(dāng)圓過點A時,此時CA=3,
∴ 點C坐標(biāo)為,C ( -2,0)
如圖2,當(dāng)圓與小圓相切時,切點為D,
∴CD=1 ,
又∵直線AB所在的函數(shù)解析式為y=-x+1,
∴ 直線AB與x軸形成的夾角是45°,
∴ RT△ACD中,CA= ,
∴ C點坐標(biāo)為 (1-,0)
∴ C點的橫坐標(biāo)的取值范圍為;-2≤ ≤1-,
如圖3,當(dāng)圓過點A時,AC=1,
C點坐標(biāo)為(2,0)
如圖4,
當(dāng)圓過點 B 時,連接 BC ,此時 BC =3,
在 Rt△OCB中,由勾股定理得OC= , C點坐標(biāo)為 (2,0).
∴ C點的橫坐標(biāo)的取值范圍為2≤ ≤2 ;
∴綜上所述點C的橫坐標(biāo)的取值范圍為- ≤≤- 或 ≤≤.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.
(1)求證ΔADE∽ΔABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)習(xí)小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如下折線統(tǒng)計圖,則符合這一結(jié)果的實驗最有可能的是( 。
A. 袋中裝有大小和質(zhì)地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球
B. 擲一枚質(zhì)地均勻的正六面體骰子,向上的面的點數(shù)是偶數(shù)
C. 先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面
D. 先后兩次擲一枚質(zhì)地均勻的正六面體骰子,兩次向上的面的點數(shù)之和是7或超過9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,拋物線的圖象經(jīng)過坐標(biāo)原點O,且與軸的另一交點為(,0).
(1)求拋物線的解析式;
(2)若直線與拋物線相交于點A和點B(點A在第二象限),設(shè)點A′是點A關(guān)于原點O的對稱點,連接A′B,試判斷ΔAA′B的形狀,并說明理由;
(3)在問題(2)的基礎(chǔ)上,探究:平面內(nèi)是否存在點P,使得以點A,B,A′,P為頂點的四邊形是菱形?若存在直接寫出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)已知:ABCD的兩邊AB,AD的長是關(guān)于x的方程的兩個實數(shù)根.
(1)當(dāng)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;
(2)若AB的長為2,那么ABCD的周長是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知直線分別于軸和軸交于,兩點,將拋物線平移,得到拋物線,使拋物線過點,兩點.
①求交點,的坐標(biāo);
②求拋物線的函數(shù)表達(dá)式;
③求拋物線的頂點坐標(biāo)和對稱軸方程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是1個單位長度).
(1)畫出△ABC關(guān)于x軸的軸對稱圖形,得到的△A1B1C1,點C1的坐標(biāo)是 ;
(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標(biāo)是 ;
(3)△A2B2C2的面積是 平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在中,,,,是斜邊的中點,以為頂點,作,的兩邊交邊于點、(點不與點重合)
(1)當(dāng)時,求的長度;
(2)當(dāng)繞點轉(zhuǎn)動時,設(shè),,求關(guān)于的函數(shù)解析式,并寫出的取值范圍.
(3)聯(lián)結(jié),是否存在點,使△與△相似?若存在,請求出此時的長度;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程:
(1)用開平方法解方程:
(2)用配方法解方程:x2 —4x+1=0
(3)用公式法解方程:3x2+5(2x+1)=0
(4)用因式分解法解方程:3(x-5)2=2(5-x)
(5)解方程:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com