【題目】如圖,A、B、C三點在一條直線上,根據(jù)圖形填空:
(1)AC= + + ;
(2)AB=AC﹣ ;
(3)DB+BC= ﹣AD
(4)若AC=8cm,D是線段AC中點,B是線段DC中點,求線段AB的長.
【答案】(1)AD,DB,BC;(2)BC;(3)AC;(4)6cm.
【解析】
(1)根據(jù)圖形直觀的得到線段之間的關(guān)系;
(2)根據(jù)圖形直觀的得到線段之間的關(guān)系;
(3)根據(jù)圖形直觀的得到各線段之間的關(guān)系;
(4)AD和CD的長度相等并且都等于AC的一半,DB的長度為CD長度的一半即為AC長度的四分之一.AB的長度等于AD加上DB,從而可求出AB的長度.
(1)AC=AD+DB+BC
故答案為:AD,DB,BC;
(2)AB=AC﹣BC;
故答案為:BC;
(3)DB+BC=DC=AC﹣AD
故答案為:AC;
(4)∵D是AC的中點,AC=8時,AD=DC=4
B是DC的中點,
∴DB=2
∴AB=AD+DB
=4+2,
=6(cm).
科目:初中數(shù)學 來源: 題型:
【題目】把 6個相同的小正方體擺成如圖的幾何體.
(1)畫出該幾何體的主視圖、左視圖、俯視圖;
(2)如果每個小正方體棱長為,則該幾何體的表面積是 .
(3)如果在這個幾何體上再添加一些相同的小正方體,并并保持左視圖和俯視圖不變,那么最多可以再 添加 個小正方體.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算題.
(1)
(2)
(3)2002-202×198
(4)
(5)[(2x+y)2﹣y(y+4x)﹣8xy]÷(﹣2x).其中x=-2,y=1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點C在線段BE上,分別以BC、CE為邊作等邊三角形ABC和等邊三角形DCE,連接AE與CD相交于點N,連接BD與AC相交于點M,連接OC、MN,則以下結(jié)論①AE=BD;②△ACN≌△BCM;③∠BOE=120°;④△MNC是等邊三角形;⑤OC平分∠BOE;正確的個數(shù)是( 。
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】嘉嘉參加機器人設計活動,需操控機器人在5×5的方格棋盤上從A點行走至B點,且每個小方格皆為正方形,主辦單位規(guī)定了三條行走路徑R1,R2,R3,其行經(jīng)位置如圖與表所示:
路徑 | 編號 | 圖例 | 行徑位置 |
第一條路徑 | R1 | _ | A→C→D→B |
第二條路徑 | R2 | … | A→E→D→F→B |
第三條路徑 | R3 | ▂ | A→G→B |
已知A、B、C、D、E、F、G七點皆落在格線的交點上,且兩點之間的路徑皆為直線,在無法使用任何工具測量的條件下,請判斷R1、R2、R3這三條路徑中,最長與最短的路徑分別為何?請寫出你的答案,并完整說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知OC是∠AOB內(nèi)部的一條射線,M、N分別為OA、OB上的點,線段OM、ON同時開始旋轉(zhuǎn),線段OM以30度/秒繞點O逆時針旋轉(zhuǎn),線段ON以10度/秒的速度繞點O順時針旋轉(zhuǎn),當OM旋轉(zhuǎn)到與OB重合時,線段OM、ON都停止旋轉(zhuǎn).設OM的旋轉(zhuǎn)時間為t秒.
(1)若∠AOB=140°,當t=2秒時,∠MON= ,當t=4秒時,∠MON= ;
(2)如圖②,若∠AOB=140°,OC是∠AOB的平分線,求t為何值時,兩個角∠NOB與∠COM中的其中一個角是另一個角的2倍.
(3)如圖③,若OM、ON分別在∠AOC、∠COB內(nèi)部旋轉(zhuǎn)時,總有∠COM=3∠CON,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點的坐標分別為:A(-1,2),B(-2,-1),C(2,0).
(1)作圖:將△ABC先向右平移4個單位,再向上平移3個單位,則得到△A1B1C1,作出△A1B1C1;(不要求寫作法)
(2)寫出下列點的坐標:A1______;B1______;C1______.
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形網(wǎng)格中以點A為圓心,AB為半徑作圓A交網(wǎng)格于點C(如圖(1)),過點C作圓的切線交網(wǎng)格于點D,以點A為圓心,AD為半徑作圓交網(wǎng)格于點E(如圖(2)).
問題:
(1)求∠ABC的度數(shù);
(2)求證:△AEB≌△ADC;
(3)△AEB可以看作是由△ADC經(jīng)過怎樣的變換得到的?并判斷△AED的形狀(不用說明理由).
(4)如圖(3),已知直線a,b,c,且a∥b,b∥c,在圖中用直尺、三角板、圓規(guī)畫等邊三角形A′B′C′使三個頂點A′,B′,C′,分別在直線a,b,c上.要求寫出簡要的畫圖過程,不需要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】青少年視力水平下降已引起全社會的廣泛關(guān)注,為了解某市初中畢業(yè)年級5 000名學生的視力情況,我們從中抽取了一部分學生的視力作為樣本進行數(shù)據(jù)處理,得到如下的不完整的頻數(shù)分布表和頻數(shù)分布直方圖:
請根據(jù)以上圖表信息回答下列問題:
(1)在頻數(shù)分布表中,a=________,b=________;
(2)補全條形統(tǒng)計圖;
(3)若視力在4.6以上(含4.6)均屬正常,根據(jù)上述信息估計全區(qū)初中畢業(yè)生中視力正常的學生有多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com