【題目】如圖,四邊形ABCD的對(duì)角線交于點(diǎn)O,AB∥CD,O是BD的中點(diǎn).
(1)求證:△ABO≌△CDO;
(2)若BC=AC=4,BD=6,求△BOC的周長(zhǎng).
【答案】(1)見解析;(2)9
【解析】
(1)根據(jù)平行線性質(zhì)得出∠A=∠C,∠D=∠B,根據(jù)AAS推出即可;
(2)根據(jù)全等三角形的性質(zhì)得到AO=OC=AC=2,根據(jù)三角形的周長(zhǎng)的公式即可得到結(jié)論.
(1)證明:∵AB∥CD,
∴∠BAC=∠ACD,∠ABD=∠CDB.
又∵O是BD的中點(diǎn),
∴OB=OD.
在△ABO和△CDO中,∵
∴△ABO≌△CDO(AAS).
(2)∵△ABO≌△CDO,AC=4,
∴AO=OC=AC=2.
∵O是BD的中點(diǎn),BD=6,
∴OB=BD=3,
∴△BOC的周長(zhǎng)=BC+OB+OC=4+3+2=9.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】七中育才學(xué)校排球活動(dòng)月即將開始,其中有一項(xiàng)為墊球比賽,體育組為了了解七年級(jí)學(xué)生的訓(xùn)練情況,隨機(jī)抽取了七年級(jí)部分學(xué)生進(jìn)行1分鐘墊球測(cè)試,并將這些學(xué)生的測(cè)試成績(jī)(即1分鐘的個(gè)數(shù),且這些測(cè)試成績(jī)都在60~180范圍內(nèi))分段后給出相應(yīng)等級(jí),具體為:測(cè)試成績(jī)?cè)?/span>60~90范圍內(nèi)的記為D級(jí),90~120范圍內(nèi)的記為C級(jí),120~150范圍內(nèi)的記為B級(jí),150~180范圍內(nèi)的記為A級(jí).現(xiàn)將數(shù)據(jù)整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖,其中在扇形統(tǒng)計(jì)圖中A級(jí)對(duì)應(yīng)的圓心角為90°,請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題:
(1)在扇形統(tǒng)計(jì)圖中,A級(jí)所占百分比為 ;
(2)在這次測(cè)試中,一共抽取了 名學(xué)生,并補(bǔ)全頻數(shù)分布直方圖;
(3)在(2)中的基礎(chǔ)上,在扇形統(tǒng)計(jì)圖中,求D級(jí)對(duì)應(yīng)的圓心角的度數(shù);
(4)若A,B,C,D等級(jí)的平均成績(jī)分別為165、135、105、75個(gè),你能估算出學(xué)校七年級(jí)同學(xué)的平均水平嗎?若能,請(qǐng)計(jì)算出來(lái).(保留準(zhǔn)確值)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,“中國(guó)海監(jiān)50”正在南海海域A處巡邏,島礁B上的中國(guó)海軍發(fā)現(xiàn)點(diǎn)A在點(diǎn)B的正西方向上,島礁C上的中國(guó)海軍發(fā)現(xiàn)點(diǎn)A在點(diǎn)C的南偏東30°方向上,已知點(diǎn)C在點(diǎn)B的北偏西60°方向上,且B、C兩地相距120海里.
(1)求出此時(shí)點(diǎn)A到島礁C的距離;
(2)若“中海監(jiān)50”從A處沿AC方向向島礁C駛?cè),?dāng)?shù)竭_(dá)點(diǎn)A′時(shí),測(cè)得點(diǎn)B在A′的南偏東75°的方向上,求此時(shí)“中國(guó)海監(jiān)50”的航行距離.(注:結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB=120°,∠COD=60°,OE平分∠BOC
(1)如圖①.當(dāng)∠COD在∠AOB的內(nèi)部時(shí)
①若∠AOC=39°40′,求∠DOE的度數(shù);
②若∠AOC=α,求∠DOE的度數(shù)(用含α的代數(shù)式表示),
(2)如圖②,當(dāng)∠COD在∠AOB的外部時(shí),
①請(qǐng)直接寫出∠AOC與∠DOE的度數(shù)之間的關(guān)系;
②在∠AOC內(nèi)部有一條射線OF,滿足∠AOC+2∠BOE=4∠AOF,寫出∠AOF與∠DOE的度數(shù)之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x>0)的圖象交于A(2,﹣1),B( ,n)兩點(diǎn),直線y=2與y軸交于點(diǎn)C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB=120°,∠COD=60°,OE平分∠BOC
(1)如圖①.當(dāng)∠COD在∠AOB的內(nèi)部時(shí)
①若∠AOC=39°40′,求∠DOE的度數(shù);
②若∠AOC=α,求∠DOE的度數(shù)(用含α的代數(shù)式表示),
(2)如圖②,當(dāng)∠COD在∠AOB的外部時(shí),
①請(qǐng)直接寫出∠AOC與∠DOE的度數(shù)之間的關(guān)系;
②在∠AOC內(nèi)部有一條射線OF,滿足∠AOC+2∠BOE=4∠AOF,寫出∠AOF與∠DOE的度數(shù)之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了進(jìn)行資源的再利用,學(xué)校準(zhǔn)備針對(duì)庫(kù)存的桌椅進(jìn)行維修,現(xiàn)有甲、乙兩木工組,甲每天修桌凳14 套,乙每天比甲多7套,甲單獨(dú)修完這些桌凳比乙單獨(dú)修完多用20天.學(xué)校每天付甲組80元修理費(fèi),付乙組120元修理費(fèi).
(1)請(qǐng)問(wèn)學(xué)校庫(kù)存多少套桌凳?
(2)在修理過(guò)程中,學(xué)校要派一名工人進(jìn)行質(zhì)量監(jiān)督,學(xué)校負(fù)擔(dān)他每天10元生活補(bǔ)助費(fèi),現(xiàn)有三種修理方案:①由甲單獨(dú)修理;②由乙單獨(dú)修理;③甲、乙合作同時(shí)修理.你選哪種方案,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線l與拋物線y=mx2+nx相交于A(1,3 ),B(4,0)兩點(diǎn).
(1)求出拋物線的解析式;
(2)在坐標(biāo)軸上是否存在點(diǎn)D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說(shuō)明理由;
(3)點(diǎn)P是線段AB上一動(dòng)點(diǎn),(點(diǎn)P不與點(diǎn)A、B重合),過(guò)點(diǎn)P作PM∥OA,交第一象限內(nèi)的拋物線于點(diǎn)M,過(guò)點(diǎn)M作MC⊥x軸于點(diǎn)C,交AB于點(diǎn)N,若△BCN、△PMN的面積S△BCN、S△PMN滿足S△BCN=2S△PMN , 求出 的值,并求出此時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com