【題目】如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過點(diǎn)C.
①求拋物線的函數(shù)關(guān)系式;
②如圖2,點(diǎn)E是y軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)P、M、N分別和點(diǎn)O、B、E對(duì)應(yīng)),并且點(diǎn)M、N都在拋物線上,作MF⊥x軸于點(diǎn)F,若線段MF:BF=1:2,求點(diǎn)M、N的坐標(biāo);
③點(diǎn)Q在拋物線的對(duì)稱軸上,以Q為圓心的圓過A、B兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).
【答案】(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③點(diǎn)Q的坐標(biāo)為(1,﹣4+2)或(1,﹣4﹣2).
【解析】
分析: (1)將二次函數(shù)的解析式進(jìn)行配方即可得到頂點(diǎn)D的坐標(biāo).
(2)①以AD為直徑的圓經(jīng)過點(diǎn)C,即點(diǎn)C在以AD為直徑的圓的圓周上,依據(jù)圓周角定理不難得出△ACD是個(gè)直角三角形,且∠ACD=90°,A點(diǎn)坐標(biāo)可得,而C、D的坐標(biāo)可由a表達(dá)出來,在得出AC、CD、AD的長度表達(dá)式后,依據(jù)勾股定理列等式即可求出a的值.
②將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°得到△PMN,說明了PM正好和x軸平行,且PM=OB=1,所以求M、N的坐標(biāo)關(guān)鍵是求出點(diǎn)M的坐標(biāo);首先根據(jù)①的函數(shù)解析式設(shè)出M點(diǎn)的坐標(biāo),然后根據(jù)題干條件:BF=2MF作為等量關(guān)系進(jìn)行解答即可.
③設(shè)⊙Q與直線CD的切點(diǎn)為G,連接QG,由C、D兩點(diǎn)的坐標(biāo)不難判斷出∠CDQ=45°,那么△QGD為等腰直角三角形,即QD =2QG =2QB ,設(shè)出點(diǎn)Q的坐標(biāo),然后用Q點(diǎn)縱坐標(biāo)表達(dá)出QD、QB的長,根據(jù)上面的等式列方程即可求出點(diǎn)Q的坐標(biāo).
詳解:
(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,
∴D(1,﹣4a).
(2)①∵以AD為直徑的圓經(jīng)過點(diǎn)C,
∴△ACD為直角三角形,且∠ACD=90°;
由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),則:
AC2=9a2+9、CD2=a2+1、AD2=16a2+4
由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,
化簡,得:a2=1,由a<0,得:a=﹣1,
②∵a=﹣1,
∴拋物線的解析式:y=﹣x2+2x+3,D(1,4).
∵將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°得到△PMN,
∴PM∥x軸,且PM=OB=1;
設(shè)M(x,﹣x2+2x+3),則OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;
∵BF=2MF,
∴x+1=2(﹣x2+2x+3),化簡,得:2x2﹣3x﹣5=0
解得:x1=﹣1(舍去)、x2=.
∴M(,)、N(,).
③設(shè)⊙Q與直線CD的切點(diǎn)為G,連接QG,過C作CH⊥QD于H,如下圖:
∵C(0,3)、D(1,4),
∴CH=DH=1,即△CHD是等腰直角三角形,
∴△QGD也是等腰直角三角形,即:QD2=2QG2;
設(shè)Q(1,b),則QD=4﹣b,QG2=QB2=b2+4;
得:(4﹣b)2=2(b2+4),
化簡,得:b2+8b﹣8=0,解得:b=﹣4±2;
即點(diǎn)Q的坐標(biāo)為(1,)或(1,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦DC交AB于E,過C作⊙O的切線交DB的延長線于M,若AB=4,∠ADC=45°,∠M=75°,則CD的長為( 。
A. B. 2 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD中,AB=4,AD=5,E為BC上一點(diǎn),BE:CE=3:2,連接AE,點(diǎn)P從點(diǎn)A出發(fā),沿射線AB的方向以每秒1個(gè)單位長度的速度勻速運(yùn)動(dòng),過點(diǎn)P作PF∥BC交直線AE于點(diǎn)F.
(1)線段AE= ;
(2)設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),EF的長度為y,求y關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)當(dāng)t為何值時(shí),以F為圓心的⊙F恰好與直線AB、BC都相切?并求此時(shí)⊙F的半徑;
(4)如圖2,將△AEC沿直線AE翻折,得到△AEC',連結(jié)AC',如果∠ABF=∠CBC′,求t值.(直接寫出答案,不要求解答過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程|x2﹣x|﹣a=0,給出下列四個(gè)結(jié)論:①存在實(shí)數(shù)a,使得方程恰有2個(gè)不同的實(shí)根; ②存在實(shí)數(shù)a,使得方程恰有3個(gè)不同的實(shí)根;③存在實(shí)數(shù)a,使得方程恰有4個(gè)不同的實(shí)根;④存在實(shí)數(shù)a,使得方程恰有6個(gè)不同的實(shí)根;其中正確的結(jié)論個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,等邊△ABC中,邊長為4,P、Q為AB、AC上的點(diǎn),將△ABC沿著PQ折疊,使得A點(diǎn)與線段BC上的點(diǎn)D重合,且BD:CD=1:3,則AQ的長度為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(a,0),B(0,b),且a、b滿足.
(1)填空:a= ,b= ;
(2)如圖1,將ΔAOB沿x軸翻折得ΔAOC,D為線段AB上一動(dòng)點(diǎn),OE⊥OD交AC于點(diǎn)E,求S四邊形ODAE.
(3)如圖2,D為AB上一點(diǎn),過點(diǎn)B作BF⊥OD于點(diǎn)G,交x軸于點(diǎn)F,點(diǎn)H為x軸正半軸上一點(diǎn),∠BFO=∠DHO,求證:AF=OH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五·一”期間,九年一班同學(xué)從學(xué)校出發(fā),去距學(xué)校6千米的本溪水洞游玩,同學(xué)們分為步行和騎自行車兩組,在去水洞的全過程中,騎自行車的同學(xué)比步行的同學(xué)少用40分鐘,已知騎自行車的速度是步行速度的3倍.
(1)求步行同學(xué)每分鐘走多少千米?
(2)如圖是兩組同學(xué)前往水洞時(shí)的路程y(千米)與時(shí)間x(分鐘)的函數(shù)圖象.
完成下列填空:
①表示騎車同學(xué)的函數(shù)圖象是線段__________;
②已知A點(diǎn)坐標(biāo)(30,0),則B點(diǎn)的坐標(biāo)為(________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰中,,點(diǎn)A、B分別在坐標(biāo)軸上.
(1)如圖①,若,,求C點(diǎn)的坐標(biāo);
(2)如圖②,若點(diǎn)A的坐標(biāo)為,點(diǎn)B在y軸的正半軸上運(yùn)動(dòng)時(shí),分別以OB,AB為邊在第一,第二象限作等腰,等腰,連接EF交y軸于P點(diǎn),當(dāng)點(diǎn)B在y軸上移動(dòng)時(shí),PB的長度是否變化?如果不變求出PB值,如果變化求PB的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從A,B兩地同時(shí)出發(fā)相向而行.并以各自的速度勻速行駛,甲車途徑C地時(shí)休息一小時(shí),然后按原速度繼續(xù)前進(jìn)到達(dá)B地;乙車從B地直接到達(dá)A地,如圖是甲、乙兩車和B地的距離y(千米)與甲車出發(fā)時(shí)間x(小時(shí))的函數(shù)圖象.
(1)直接寫出a,m,n的值;
(2)求出甲車與B地的距離y(千米)與甲車出發(fā)時(shí)間x(小時(shí))的函數(shù)關(guān)系式(寫出自變量x的取值范圍);
(3)當(dāng)兩車相距120千米時(shí),乙車行駛了多長時(shí)間?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com