【題目】如圖1,二次函數(shù)yax22ax3aa0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D

1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);

2)若以AD為直徑的圓經(jīng)過點(diǎn)C

①求拋物線的函數(shù)關(guān)系式;

②如圖2,點(diǎn)Ey軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)P、M、N分別和點(diǎn)OB、E對(duì)應(yīng)),并且點(diǎn)M、N都在拋物線上,作MFx軸于點(diǎn)F,若線段MFBF12,求點(diǎn)MN的坐標(biāo);

③點(diǎn)Q在拋物線的對(duì)稱軸上,以Q為圓心的圓過AB兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).

【答案】(1)(1,﹣4a);(2)y=﹣x2+2x+3;M(,)、N(,);③點(diǎn)Q的坐標(biāo)為(1,﹣4+2)或(1,﹣4﹣2).

【解析】

分析: (1)將二次函數(shù)的解析式進(jìn)行配方即可得到頂點(diǎn)D的坐標(biāo).

(2)①以AD為直徑的圓經(jīng)過點(diǎn)C,即點(diǎn)C在以AD為直徑的圓的圓周上,依據(jù)圓周角定理不難得出△ACD是個(gè)直角三角形,且∠ACD=90°,A點(diǎn)坐標(biāo)可得,而C、D的坐標(biāo)可由a表達(dá)出來,在得出AC、CD、AD的長度表達(dá)式后,依據(jù)勾股定理列等式即可求出a的值.

②將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°得到△PMN,說明了PM正好和x軸平行,且PM=OB=1,所以求M、N的坐標(biāo)關(guān)鍵是求出點(diǎn)M的坐標(biāo);首先根據(jù)①的函數(shù)解析式設(shè)出M點(diǎn)的坐標(biāo),然后根據(jù)題干條件:BF=2MF作為等量關(guān)系進(jìn)行解答即可.

③設(shè)⊙Q與直線CD的切點(diǎn)為G,連接QG,由C、D兩點(diǎn)的坐標(biāo)不難判斷出∠CDQ=45°,那么△QGD為等腰直角三角形,即QD =2QG =2QB ,設(shè)出點(diǎn)Q的坐標(biāo),然后用Q點(diǎn)縱坐標(biāo)表達(dá)出QD、QB的長,根據(jù)上面的等式列方程即可求出點(diǎn)Q的坐標(biāo).

詳解:

(1)∵y=ax2﹣2ax﹣3a=ax﹣1)2﹣4a

D(1,﹣4a).

(2)①∵以AD為直徑的圓經(jīng)過點(diǎn)C,

∴△ACD為直角三角形,且∠ACD=90°;

y=ax2﹣2ax﹣3a=ax﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),則:

AC2=9a2+9、CD2=a2+1、AD2=16a2+4

由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4

化簡,得:a2=1,由a<0,得:a=﹣1,

②∵a=﹣1

∴拋物線的解析式:y=﹣x2+2x+3,D(1,4).

∵將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°得到△PMN,

PMx軸,且PM=OB=1;

設(shè)Mx,﹣x2+2x+3),則OF=xMF=﹣x2+2x+3,BF=OF+OB=x+1;

BF=2MF,

x+1=2(﹣x2+2x+3),化簡,得:2x2﹣3x﹣5=0

解得:x1=﹣1(舍去)、x2=.

M,)、N).

③設(shè)⊙Q與直線CD的切點(diǎn)為G,連接QG,過CCHQDH,如下圖:

C(0,3)、D(1,4),

CH=DH=1,即△CHD是等腰直角三角形,

∴△QGD也是等腰直角三角形,即:QD2=2QG2;

設(shè)Q(1,b),則QD=4﹣b,QG2=QB2=b2+4;

得:(4﹣b2=2(b2+4),

化簡,得:b2+8b﹣8=0,解得:b=﹣4±2

即點(diǎn)Q的坐標(biāo)為(1,)或(1,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦DCABE,過C作⊙O的切線交DB的延長線于M,若AB=4,ADC=45°,M=75°,則CD的長為( 。

A. B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形ABCD中,AB=4,AD=5,EBC上一點(diǎn),BE:CE=3:2,連接AE,點(diǎn)P從點(diǎn)A出發(fā),沿射線AB的方向以每秒1個(gè)單位長度的速度勻速運(yùn)動(dòng),過點(diǎn)PPFBC交直線AE于點(diǎn)F.

(1)線段AE=   

(2)設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),EF的長度為y,求y關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;

(3)當(dāng)t為何值時(shí),以F為圓心的⊙F恰好與直線AB、BC都相切?并求此時(shí)⊙F的半徑;

(4)如圖2,將AEC沿直線AE翻折,得到AEC',連結(jié)AC',如果∠ABF=CBC′,求t值.(直接寫出答案,不要求解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程|x2﹣x|﹣a=0,給出下列四個(gè)結(jié)論:①存在實(shí)數(shù)a,使得方程恰有2個(gè)不同的實(shí)根; ②存在實(shí)數(shù)a,使得方程恰有3個(gè)不同的實(shí)根;③存在實(shí)數(shù)a,使得方程恰有4個(gè)不同的實(shí)根;④存在實(shí)數(shù)a,使得方程恰有6個(gè)不同的實(shí)根;其中正確的結(jié)論個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,等邊△ABC中,邊長為4,P、QAB、AC上的點(diǎn),將△ABC沿著PQ折疊,使得A點(diǎn)與線段BC上的點(diǎn)D重合,且BD:CD=1:3,則AQ的長度為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知Aa,0),B0,b),且a、b滿足.

1)填空:a= b=

2)如圖1,將ΔAOB沿x軸翻折得ΔAOC,D為線段AB上一動(dòng)點(diǎn),OEODAC于點(diǎn)E,求S四邊形ODAE.

3)如圖2DAB上一點(diǎn),過點(diǎn)BBFOD于點(diǎn)G,交x軸于點(diǎn)F,點(diǎn)Hx軸正半軸上一點(diǎn),∠BFO=DHO,求證:AF=OH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“五·一”期間,九年一班同學(xué)從學(xué)校出發(fā),去距學(xué)校6千米的本溪水洞游玩,同學(xué)們分為步行和騎自行車兩組,在去水洞的全過程中,騎自行車的同學(xué)比步行的同學(xué)少用40分鐘,已知騎自行車的速度是步行速度的3倍.

(1)求步行同學(xué)每分鐘走多少千米?

(2)如圖是兩組同學(xué)前往水洞時(shí)的路程y(千米)與時(shí)間x(分鐘)的函數(shù)圖象

完成下列填空:

表示騎車同學(xué)的函數(shù)圖象是線段__________

②已知A點(diǎn)坐標(biāo)(30,0),則B點(diǎn)的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰中,,點(diǎn)A、B分別在坐標(biāo)軸上.

1)如圖①,若,求C點(diǎn)的坐標(biāo);

2)如圖②,若點(diǎn)A的坐標(biāo)為,點(diǎn)By軸的正半軸上運(yùn)動(dòng)時(shí),分別以OBAB為邊在第一,第二象限作等腰,等腰,連接EFy軸于P點(diǎn),當(dāng)點(diǎn)By軸上移動(dòng)時(shí),PB的長度是否變化?如果不變求出PB值,如果變化求PB的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車分別從A,B兩地同時(shí)出發(fā)相向而行.并以各自的速度勻速行駛,甲車途徑C地時(shí)休息一小時(shí),然后按原速度繼續(xù)前進(jìn)到達(dá)B地;乙車從B地直接到達(dá)A地,如圖是甲、乙兩車和B地的距離y(千米)與甲車出發(fā)時(shí)間x(小時(shí))的函數(shù)圖象.

(1)直接寫出a,m,n的值;

(2)求出甲車與B地的距離y(千米)與甲車出發(fā)時(shí)間x(小時(shí))的函數(shù)關(guān)系式(寫出自變量x的取值范圍);

(3)當(dāng)兩車相距120千米時(shí),乙車行駛了多長時(shí)間?

查看答案和解析>>

同步練習(xí)冊(cè)答案