【題目】如圖所示,在直角坐標(biāo)系xOy中,△ABC三點的坐標(biāo)分別為A(-l,0),B(-4,4),C(0,3).
(1)在圖中畫出△ABC關(guān)于y軸對稱的圖形△A1B1C1;寫出B1的坐標(biāo)為___________.
(2)填空:在圖中,若B2(-4,-4)與點B關(guān)于一條直線成軸對稱,則這條對稱軸是________,此時點C關(guān)于這條直線的對稱點C2的坐標(biāo)為_____________;
(3)在y軸上確定一點P,使△APB的周長最小.(注:簡要說明作法,保留作圖痕跡,不求坐標(biāo))
【答案】 (4,4) x軸 (0,-3)
【解析】試題分析:(1)先依次作出點A,B,C關(guān)于y軸對稱的點A1,B1,C1,根據(jù)點關(guān)于y軸對稱,可寫出B1的坐標(biāo),(2)根據(jù)點B(-4,4)和點B2(-4,-4)兩點橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),可得點B(-4,4)和點B2(-4,-4)兩點關(guān)于x軸對稱,然后再求出點C關(guān)于x軸的對稱點(3) 要使在y軸上確定一點P,使△APB的周長最小,可先做點A關(guān)于y軸的對稱點A1,然后連接A1B, A1B與y軸的交點即為點P.
試題解析:(1)畫圖,
B1(4,4),
(2) x軸,(0,-3),
(3)連接A1B,交y軸于一點,就是所求點P.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個分式的分子或分母可以因式分解,且這個分式不可約分,那么我們稱這
個分式為“和諧分式”.
(1)下列分式:①;②;③;④. 其中是“和諧分式”是 (填寫序號即可);
(2)若為正整數(shù),且為“和諧分式”,請寫出的值;
(3)在化簡時,
小東和小強分別進行了如下三步變形:
小東:
小強:
顯然,小強利用了其中的和諧分式, 第三步所得結(jié)果比小東的結(jié)果簡單,
原因是: ,
請你接著小強的方法完成化簡.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的邊BC在直線l上,AC⊥BC,且AC=BC;△EFP的邊FP也在直線 l上,邊EF與邊AC重合,且EF=FP.
(1)在圖1中,請你通過觀察、測量,猜想并寫出AB與AP所滿足的數(shù)量關(guān)系和位置關(guān)系;
(2)將△EFP沿直線l向左平移到圖2的位置時,EP交AC于點Q,連結(jié)AP,
BQ.猜想并寫出BQ 與AP 所滿足的數(shù)量關(guān)系和位置關(guān)系,請證明你的猜想;
(3)AP,BQ .你認為(2)中所猜想的BQ 與AP的數(shù)量關(guān)系和位置關(guān)系還成立嗎?若成立,給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下面直角坐標(biāo)系中,已知A(0,a),B(b,0),C(b,c)三點,其中a、b、c滿足關(guān)系式+(b﹣3)2=0,(c﹣4)2≤0
(1)求a、b、c的值;
(2)如果在第二象限內(nèi)有一點P(﹣m,),請用含m的式子表示四邊形ABOP的面積;
(3)在(2)的條件下,是否存在點P,使四邊形ABOP的面積與△ABC的面積相等?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△A1C1C2的周長為1,作C1D1⊥A1C2于D1,在C1C2的延長線上取點C3,使D1C3=D1C1,連接D1C3,以C2C3為邊作等邊△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延長線上取點C4,使D2C4=D2C2,連接D2C4,以C3C4為邊作等邊△A3C3C4;…且點A1,A2,A3,…都在直線C1C2同側(cè),如此下去,則△A1C1C2,△A2C2C3,△A3C3C4,…,△AnCnCn+1的周長和為______.(n≥2,且n為整數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com