【題目】如圖,一架梯子AB長13米,斜靠在一面墻上,梯子底端離墻5米.(1)這個梯子的頂端距地面有多高?(2)如果梯子的頂端下滑了5米,那么梯子的底端在水平方向滑動了多少米?
【答案】(1)12米;(2)
【解析】
(1)利用勾股定理可以得出梯子的頂端距離地面的高度.
(2)由(1)可以得出梯子的初始高度,下滑1米后,可得出梯子的頂端距離地面的高度,再次使用勾股定理,已知梯子的底端距離墻的距離為5米,可以得出,梯子底端水平方向上滑行的距離.
解:(1)根據(jù)勾股定理:所以梯子距離地面的高度為:AO===12(米);
答:這個梯子的頂端距地面有12米高;
(2)梯子下滑了1米即梯子距離地面的高度為OA′=12﹣5=7(米),根據(jù)勾股定理:OB′===2 (米),
∴BB′=OB′﹣OB=(2﹣5)米
答:當(dāng)梯子的頂端下滑1米時,梯子的底端水平后移了(2﹣5)米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠C=90°,AD是∠BAC的平分線,DE⊥AB,垂足為E.
(1)若CD=6,求AC的長;
(2)求證:AB-AC=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,點E是線段AD上的任意一點(E與A,D不重合),G,F,H分別為BE,BC,CE的中點.
(1)試說明四邊形EGFH是平行四邊形;
(2)在(1)的條件下,若EF⊥BC,且EF=BC,試說明平行四邊形EGFH是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁一起研究一道數(shù)學(xué)題,如圖,已知 EF⊥AB,CD⊥AB,甲說:“如果還知道∠CDG=∠BFE,則能得到∠AGD=∠ACB.”乙說:“如果還知道∠AGD=∠ACB,則能得到∠CDG=∠BFE.”丙說:“∠AGD 一定大于∠BFE.”丁說:“如果連接 GF,則 GF∥AB.”他們四人中,正確的是( 。
A.0 個B.1 個C.2 個D.3 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC,CD⊥AB于D點,M,N是AC,BC上的動點,且∠MDN=90°,下列結(jié)論:①AM=CN;②四邊形MDNC的面積為定值;③AM2+BN2=MN2;④NM平分∠CND.其中正確的是 ( )
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個角的兩邊與另一個角的兩邊分別平行,結(jié)合下圖,試探索這兩個角之間的數(shù)量關(guān)系,并說明你的理由.
(1)如圖1,AB∥EF,BC∥DE.猜想∠1與∠2的數(shù)量關(guān)系是:_______.
(2)如圖2,AB∥EF,BC∥DE. 猜想∠1與∠2的數(shù)量關(guān)系是:_______.
(3)由(1)(2)可以得出的結(jié)論是:如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角_____ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣ x+2分別與x、y軸交于點B、A,與反比例函數(shù)的圖象分別交于點C、D,CE⊥x軸于點E,OE=2.
(1)求反比例函數(shù)的解析式;
(2)連接OD,求△OBD的面積.
(3)x取何值時,反比例函數(shù)的值大于一次函數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列各式
(x﹣1)(x+1)=x2﹣1
(x﹣1)(x2+x+1)=x3﹣1
(x﹣1)(x3+x2+x+1)=x4﹣1
(1)根據(jù)以上規(guī)律,則(x﹣1)(x6+x5+x4+x3+x2+x+1)= ;
(2)你能否由此歸納出一般規(guī)律(x﹣1)(xn+xn﹣1+……+x+1)= ;
(3)根據(jù)以上規(guī)律求32018+32017+32016+…32+3+1的結(jié)果.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com