【題目】ABC中,AD是∠BAC的平分線,E、F分別為AB、AC上的點(diǎn),且∠EDF+EAF=180°,求證DE=DF.

【答案】證明見解析.

【解析】

DDMAB,于M,DNACN,根據(jù)角平分線性質(zhì)求出DN=DM,繼而可推導(dǎo)得出∠MED=NFD,根據(jù)全等三角形的判定AAS推出EMD≌△FND即可.

DDMABM,DNACN,

即∠EMD=FND=90°,

AD平分∠BAC,DMAB,DNAC,

DM=DN(角平分線性質(zhì)),

∵∠EAF+EDF=180°,

∴∠MED+AFD=360°-180°=180°,

∵∠AFD+NFD=180°,

∴∠MED=NFD,

EMDFND

,

∴△EMD≌△FND(AAS),

DE=DF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來,共享單車逐漸成為高校學(xué)生喜愛的“綠色出行”方式之一,自2016年國慶后,許多高校均投放了使用手機(jī)支付就可隨取隨用的共享單車.某高校為了解本校學(xué)生出行使用共享單車的情況,隨機(jī)調(diào)查了某天部分出行學(xué)生使用共享單車的情況,并整理成如下統(tǒng)計(jì)表.

使用次數(shù)

0

1

2

3

4

5

人數(shù)

11

15

23

28

18

5

(1)這天部分出行學(xué)生使用共享單車次數(shù)的中位數(shù)是   ,眾數(shù)是   ,該中位數(shù)的意義是   

(2)這天部分出行學(xué)生平均每人使用共享單車約多少次?(結(jié)果保留整數(shù))

(3)若該校某天有1500名學(xué)生出行,請你估計(jì)這天使用共享單車次數(shù)在3次以上(含3次)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△PQR是⊙O的內(nèi)接正三角形,四邊形ABCD是⊙O的內(nèi)接正方形,BC∥QR,則∠AOQ=( )

A.60°
B.65°
C.72°
D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長線于點(diǎn)F,連接CF.

(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,AB=AC,ADABC的角平分線,DEAB,DFAC,垂足分別為E,F.則下列結(jié)論:AD上任意一點(diǎn)到點(diǎn)C,B的距離相等;AD上任意一點(diǎn)到邊AB,AC的距離相等;BD=CD,ADBC;④∠BDE=CDF.其中正確的個數(shù)為(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有15張大小、形狀及背面完全相同的卡片,卡片正面分別畫有正三角形、正方形、圓,從這15張卡片中任意抽取一張正面的圖形既是軸對稱圖形,又是中心對稱圖形的概率是 ,則正面畫有正三角形的卡片張數(shù)為( )
A.3
B.5
C.10
D.15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y= 的圖象如圖,則二次函數(shù)y=2kx2﹣4x+k2的圖象大致為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知E,F分別是AB、CD上的動點(diǎn),P也為一動點(diǎn).

1)如圖1,若ABCD,求證:∠P=∠BEP+∠PFD;

2)如圖2,若∠P=∠PFD-∠BEP,求證:ABCD;

3)如圖3,ABCD,移動EF使得∠EPF90°,作∠PEG=∠BEP,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一架梯子AB長13米,斜靠在一面墻上,梯子底端離墻5米.(1)這個梯子的頂端距地面有多高?(2)如果梯子的頂端下滑了5米,那么梯子的底端在水平方向滑動了多少米?

查看答案和解析>>

同步練習(xí)冊答案