關于x的方程(a2-3)x2+ax+1=0是一元二次方程的條件是
a≠±
3
a≠±
3
分析:根據(jù)一元二次方程的一般形式是ax2+bx+c=0(a≠0,a b c是常數(shù)),求出即可.
解答:解:∵關于x的方程(a2-3)x2+ax+1=0是一元二次方程,
∴a2-3≠0,
∴a≠±
3
,
故答案是:a≠±
3
點評:本題考查了對一元二次方程的定義的理解,知道一元二次方程的一般形式是ax2+bx+c=0(a≠0,a b c是常數(shù))是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如果不論R是何值,x=-1總是關于x的方程
Rx+a
2
-
2x-bR
3
=1
的解,則a=
 
,b=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、若關于x的方程(a2-1)x2+(a-1)x+3=0是一元二次方程,則a=
≠±1
;若關于x的方程(a2-1)x2+(a-1)x+3=0是一元一次方程,則
a=-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、已知關于x的方程(a2-4a+5)x2+2ax+4=0
(1)當a=2時,解這個方程;
(2)試證明:無論a為何實數(shù),這個方程都是一元二次方程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

下列說法:
(1)b=a+c時,方程ax2+bx+c=0(a≠0)一定有實數(shù)根;
(2)b2-5ac>0時,關于x的一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根;
(3)若關于x的一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根,則方程cx2+bx+a=0也一定有兩個不相等的實數(shù)根;
(4)關于x的方程(a2-8a+20)x2+2ax+1=0無論a取何值,該方程都是一元二次方程.
其中正確的有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的方程(a2+1)x2-2(a+b)x+b2+1=0
(1)若b=2,且2是此方程的根,求a的值;
(2)若此方程有實數(shù)根,當-3<a<-1時,求b的取值范圍.

查看答案和解析>>

同步練習冊答案