(2009•雅安)下列圖形,既是中心對(duì)稱圖形又是軸對(duì)稱圖形的是(  )
分析:根據(jù)軸對(duì)稱圖形的概念:如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形叫做軸對(duì)稱圖形,這條直線叫做對(duì)稱軸;中心對(duì)稱圖形的定義:把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形就叫做中心對(duì)稱圖形,針對(duì)每一個(gè)選項(xiàng)進(jìn)行分析,即可選出答案.
解答:解:A、是軸對(duì)稱圖形,不是中心對(duì)稱圖形.故此選項(xiàng)錯(cuò)誤;
B、不是軸對(duì)稱圖形,是中心對(duì)稱圖形.故此選項(xiàng)錯(cuò)誤;
C、是軸對(duì)稱圖形,不是中心對(duì)稱圖形.故此選項(xiàng)錯(cuò)誤;
D、是軸對(duì)稱圖形,也是中心對(duì)稱圖形.故此選項(xiàng)正確;
故選D.
點(diǎn)評(píng):此題主要考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•雅安)如圖,將△ABC沿BC方向平移得到△A′B′C′.已知BC=
3
cm,△ABC與△A′B′C′重疊部分(圖中陰影部分)的面積是△ABC的
1
3
,則△ABC平移的距離BB′是
3
-1)
3
-1)
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•雅安)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=
m
x
的圖象相交于點(diǎn)C(2,2),與x軸負(fù)半軸交于點(diǎn)A,與y軸交于點(diǎn)B,O為坐標(biāo)原點(diǎn),且tan∠BAO=
2
3

(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式.
(2)求一次函數(shù)與反比例函數(shù)圖象的另一交點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•雅安)如圖,△ABC內(nèi)接于⊙O,過(guò)點(diǎn)B的切線與CA的延長(zhǎng)線相交于點(diǎn)E,且∠BEC=90°,點(diǎn)D在OA的延長(zhǎng)線上,AO⊥BC,∠ODC=30°.
(1)求證:DC為⊙O的切線.
(2)若CA=6,求DC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•雅安)如圖,拋物線的頂點(diǎn)A的坐標(biāo)(0,2),對(duì)稱軸為y軸,且經(jīng)過(guò)點(diǎn)(-4,4).
(1)求拋物線的表達(dá)式.
(2)若點(diǎn)B的坐標(biāo)為(0,4),P為拋物線上一點(diǎn)(如圖),過(guò)點(diǎn)P作PQ⊥x軸于點(diǎn)Q,連接PB.求證:PQ=PB.
(3)若點(diǎn)C(-2,4),利用(2)的結(jié)論.判斷拋物線上是否存在一點(diǎn)K,使△KBC的周長(zhǎng)最。咳舸嬖,求出這個(gè)最小值,并求此時(shí)點(diǎn)K的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案