【題目】已知ABCD的周長為26,∠ABC=120°,BD為一條對角線,⊙O內(nèi)切于△ABD,E,F(xiàn),G為切點,已知⊙O的半徑為.求ABCD的面積.
【答案】20
【解析】
首先利用三邊及⊙O的半徑表示出平行四邊形的面積,再根據(jù)題意求出AB+AD=13,然后利用切線的性質(zhì)求出BD的長即可解答.
設⊙O分別切△ABD的邊AD、AB、BD于點G、E、F;
平行四邊形ABCD的面積為S;
則S=2S△ABD=2×(AB·OE+BD·OF+AD·OG)=(AB+AD+BD);
∵平行四邊形ABCD的周長為26,
∴AB+AD=13,
∴S=(13+BD);連接OA;
由題意得:∠OAE=30°,
∴AG=AE=3;同理可證DF=DG,BF=BE;
∴DF+BF=DG+BE=13﹣3﹣3=7,
即BD=7,
∴S=(13+7)=20.
即平行四邊形ABCD的面積為20.
科目:初中數(shù)學 來源: 題型:
【題目】某通訊公司推出①,②兩種通訊收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的通訊時間x(分)與費用y(元)之間的函數(shù)關系如圖所示.
(1)有月租的收費方式是________(填“①”或“②”),月租費是________元;
(2)分別求出①,②兩種收費方式中y與自變量x之間的函數(shù)表達式;
(3)請你根據(jù)用戶通訊時間的多少,給出經(jīng)濟實惠的選擇建議.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,D、E分別在BC、AC上,且CD=AE,AD與BE相交于P,BQ⊥AD于Q.
(1)求證:;
(2)若PQ=4,PE=1,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(0<2a<b)的頂點為P(x0,y0),點A(1,yA),B(0,yB),C(﹣1,yC)在該拋物線上,當y0≥0恒成立時,的最小值為( )
A. 1 B. 2 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠DAB=∠ABC=90°,AB=BC,E是AB的中點,CE⊥BD.
(1)求證:BE=AD;
(2)求證:AC是線段ED的垂直平分線;
(3)△DBC是等腰三角形嗎?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用一條24cm的細繩圍成一個等腰三角形。
(1)如果腰長是底邊的2倍,那么各邊的長是多少?
(2)能圍成有一邊長為4cm的等腰三角形嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知AB⊥BD,ED⊥BD,AB=CD,BC=DE
(1)求證:△ABC≌△CDE
(2)試判斷AC與CE的位置關系,并說明理由.
(3)若將CD沿CB方向平移得到圖②的情形,其余條件不變,此時第(2)問中AC與CE的位置關系還成立嗎?請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點若點D為BC邊的中點,點M為線段EF上一動點,則周長的最小值為
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC的邊長為8,AD是BC邊上的中線,點E是AC邊上的一點,AE=2,若點M是線段AD上的一個動點,則ME+MC的最小值為____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com