精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,∠C90°,點O、D分別為AB、BC的中點,做⊙OAC相切于點E,在AC邊上取一點F,使DFDO.

⑴求證:DF是⊙O切線;⑵若sinB,CF2,求⊙O的半徑.

【答案】1)證明略;(2)⊙O的半徑 .

【解析】

1)作OGDFG.連接OE.先證明OGD≌△DCF得出OG=CD,再證明四邊形CDOE是平行四邊形,得出OG=OE即可解決問題;

2)由FA,FD是⊙O的切線,推出FG=FE,設FG=FE=x,由OGD≌△DCFAAS),推出DG=CF=2,推出OD=DF=2+x,由AC=2OD,CE=OD,推出AE=EC=OD=2+x,由sinB推出∠A=30°,推出,在RtDCF中,根據DF2=CD2+CF2,構建方程即可解決問題.

1)證明:作OGDFG.連接OE

BD=DCBO=OA,
ODAC,
∴∠ODG=DFC,
∵∠OGD=DCF=90°OD=DF,
∴△OGD≌△DCFAAS),
OG=CD,
AC是⊙O的切線,
OEAC,
∴∠AEO=C=90°,
OEBC,
ODCE,
∴四邊形CDOE是平行四邊形,
CD=OE,
OG=OE
DF是⊙O的切線.

2)解:∵FA,FD是⊙O的切線,
FG=FE,設FG=FE=x
∵△OGD≌△DCFAAS),
DG=CF=2

OD=DF=2+x

AC=2OD,CE=OD
AE=EC=OD=2+x

sinB.

∴∠B=60°,

∴∠A=30°

RtDCF中,∵DF2=CD2+CF2,

解得

即⊙O的半徑是.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在△AOC中,∠OAC90°,AOAC,OC2,將△AOC放置于平面直角坐標系中,點O與坐標原點重合,斜邊OCx軸上.反比例函數yx0)的圖象經過點A.將△AOC沿x軸向右平移2個單位長度,記平移后三角形的邊與反比例函數圖象的交點為A1,A2.重復平移操作,依次記交點為A3,A4,A5,A6分別過點A,A1A2,A3A4,A5x軸的垂線,垂足依次記為P,P1P2,P3,P4,P5若四邊形APP1A1的面積記為S1,四邊形A2P2P3A3的面積記為S2,則Sn_____.(用含n的代數式表示,n為正整數)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】近幾年購物的支付方式日益增多,某數學興趣小組就此進行了抽樣調查.調查結果顯示,支付方式有:A微信、B支付寶、C現金、D其他,該小組對某超市一天內購買者的支付方式進行調查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.

請你根據統(tǒng)計圖提供的信息,解答下列問題:

(1)本次一共調查了多少名購買者?

(2)請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應的圓心角為   度.

(3)若該超市這一周內有1600名購買者,請你估計使用AB兩種支付方式的購買者共有多少名?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】學生的學業(yè)負擔過重會嚴重影響學生對待學習的態(tài)度.為此我市教育部門對部分學校的八年級學生對待學習的態(tài)度進行了一次抽樣調查(把學習態(tài)度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調查結果繪制成圖和圖的統(tǒng)計圖(不完整).請根據圖中提供的信息,解答下列問題:

1)此次抽樣調查中,共調查了 名學生;

2)將圖補充完整;

3)求出圖C級所占的圓心角的度數;

4)根據抽樣調查結果,請你估計我市近8000名八年級學生中大約有多少名學生學習態(tài)度達標(達標包括A級和B級)?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A0,4)、B2,0),點C、D分別是OA、AB的中點,在射線CD上有一動點P,若△ABP是直角三角形,則點P的坐標為_____.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某公司推出一款產品,經市場調查發(fā)現,該產品的日銷售量y(個)與銷售單價x(元)之間滿足一次函數關系,關于銷售單價,日銷售量的幾組對應值如表:(注:日銷售利潤=日銷售量×(銷售單價﹣成本單價)

銷售單價x(元)

85

95

105

115

日銷售量y(個)

175

125

75

m

1)求y關于x的函數解析式和m的值;

2)公司計劃開展科技創(chuàng)新,以降低該產品的成本,預計在今后的銷售中,日銷售量與銷售單價仍存在(1)中的關系.若想實現銷售單價為90元時,日銷售利潤不低于3750元的銷售目標,該產品的成本單價應不超過多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】利用如圖1的二維碼可以進行身份識別.某校建立了一個身份識別系統(tǒng),圖2是某個學生的識別圖案,黑色小正方形表示1,白色小正方形表示0.將第一行數字從左到右依次記為,,,那么可以轉換為該生所在班級序號,其序號為.如圖2第一行數字從左到右依次為0,1,0,1,序號為,表示該生為5班學生.表示6班學生的識別圖案是(

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1為伸縮衣架,因其便捷性,在生活中應用廣泛,該衣架由4根長為26cm的矩形木條和4根長為14cm的矩形木條組成,木條寬度都為2cm,圖2是它收縮時的狀態(tài),圓形掛鉤⊙A,⊙B,⊙C,⊙D,⊙G,⊙H,⊙I,⊙J與它所在矩形三邊相切,⊙E,⊙F與它所在矩形兩邊相切,圓心表示兩根木條的鏈接點,點E是線段BH,AI的中點,點F是線段BJCI的中點.

1)這種衣架能伸縮,依據的數學原理是_____

2)當這個伸縮衣架拉伸到最長時,DG_____cm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】近日,全省各地市的2019年初中畢業(yè)升學體育考試工作正依照某省教育廳的具體要求在有條不紊的進行當中,某中學在正式考試前,為了讓同學們在中招體育考試中獲得理想成績,同時為了了解學生的當前水平,按批次進行了模擬考試,并隨機抽取若干名學生問卷調查,現將調查結果繪制成如下不完整的統(tǒng)計圖表:

組別

成績范圍x(分)

頻數(人數)

A

60x70

54

B

50x60

m

C

40x50

n

D

30x40

6

1)這次調查的總人數有   人,表中的m   ,n   ;

2)扇形統(tǒng)計圖中B組對應的圓心角為   °;

3)請補全頻數分布直方圖;

4)若該校九年級共有學生2700名,且都參加了正式的初中畢業(yè)升學體育考試,小華也參加了這次考試并得了67分,若規(guī)定60分以上為優(yōu)秀,體育老師想要在獲得優(yōu)秀的學生中隨機抽出1名,作為學生代表向學弟學妹們傳授經驗,求抽到小華的概率.

查看答案和解析>>

同步練習冊答案