【題目】如圖,將一對直角三角形卡片的斜邊AC重合擺放,直角頂點B,D在AC的兩側(cè),連接BD,交AC于點O,取AC,BD的中點E,F,連接EF.若AB=12,BC=5,且AD=CD,則EF的長為_____.
【答案】.
【解析】
先求出BE的值,作DM⊥AB,DN⊥BC延長線,先證明△ADM≌△CDN(AAS),得出AM=CN,DM=DN,再根據(jù)正方形的性質(zhì)得BM=BN,設(shè)AM=CN=x,BM=AB-AM=12-x=BN=5+x,求出x=,BN=,根據(jù)BD為正方形的對角線可得出BD= , BF=BD= , EF== .
∵∠ABC=∠ADC,
∴A,B,C,D四點共圓,
∴AC為直徑,
∵E為AC的中點,
∴E為此圓圓心,
∵F為弦BD中點,
∴EF⊥BD,
連接BE,∴BE=AC= = =;
作DM⊥AB,DN⊥BC延長線,∠BAD=∠BCN,
在△ADM和△CDN中,
,
∴△ADM≌△CDN(AAS),
∴AM=CN,DM=DN,
∵∠DMB=∠DNC=∠ABC=90°,
∴四邊形BNDM為矩形,
又∵DM=DN,
∴矩形BNDM為正方形,
∴BM=BN,
設(shè)AM=CN=x,BM=AB-AM=12-x=BN=5+x,
∴12-x=5+x,x=,BN=,
∵BD為正方形BNDM的對角線,
∴BD=BN= ,BF=BD= ,
∴EF=== .
故答案為 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七個邊長為1的正方形按如圖所示的方式放置在平面直角坐標(biāo)系中,直線l經(jīng)過點A(4,4)和點B,且將這七個正方形的面積分成相等的兩部分,則直線l的函數(shù)表達(dá)式是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是等邊三角形,.動點從點出發(fā),以的速度在邊的延長線上運(yùn)動.以為邊作等邊三角形,點在直線同側(cè).連結(jié)相交于點.設(shè)點的運(yùn)動時間為.
(1)當(dāng) 時,.
(2)求證:.
(3)求的度數(shù).
(4)設(shè)與交于點,與交于點,連結(jié),當(dāng)點將邊分成的兩部分時,直接寫出的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:人教版八年級上冊數(shù)學(xué)教材第121頁的“閱讀與思考”內(nèi)容介紹,在因式分解中有一類形如x2+(p+q)x+pq的多項式,其常數(shù)項是兩個因數(shù)的積,而一次項系數(shù)恰好是這兩個因數(shù)的和,則我們可以把它分解成x2+(p+q)x+pq=(x+p)(x+q).
例如,x2+3x+2=x2+(1+2)x+1×2=(x+1)(x+2),具體做法是先分解二次項系數(shù),分別寫在十字交叉線的左上角和左下角,再分解常數(shù)項,分別寫在十字交叉線的右上角和右下角:然后交叉相乘,求代數(shù)和,使其等于一次項系數(shù)(如圖),這種方法稱為“十字相乘法”.
解決問題:
(1)請模仿上例,運(yùn)用十字相乘法將多項式x2﹣x﹣6因式分解(畫出十字相乘圖)
(2)若多項式x2+kx﹣12可以分解成(x+m)(x+n)(m,n為整數(shù))的形式,則m+n的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點D在BC上,BC平分∠ABE,BE∥AC,∠ADB=60°,∠CAD=2∠BDE,AB=14,BD=16,BE=4,則CD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,解答下列問題:
神奇的等式
當(dāng)a≠b時,一般來說會有a2+b≠a+b2,然而當(dāng)a和b是特殊的分?jǐn)?shù)時,這個等式卻是成立的例如:
()2+=+,()2+=+,()2+=+()2,…()2+=+()2,…
(1)特例驗證:
請再寫出一個具有上述特征的等式: ;
(2)猜想結(jié)論:
用n(n為正整數(shù))表示分?jǐn)?shù)的分母,上述等式可表示為: ;
(3)證明推廣:
①(2)中得到的等式一定成立嗎?若成立,請證明;若不成立,說明理由;
②等式()2+=+()2(m,n為任意實數(shù),且n≠0)成立嗎?若成立,請寫出一個這種形式的等式(要求m,n中至少有一個為無理數(shù));若不成立,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,對角線AC、BD相交于點O,點E在BD的延長線上,且△EAC是等邊三角形.
(1)求證:四邊形ABCD是菱形.
(2)若AC=8,AB=5,求ED的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 中, AB=11 , AC= 5 ,∠ BAC 的平分線 AD 與邊 BC 的垂直平分線 DG 相 交于點 D ,過點 D 分別作 DE⊥AB ,DF⊥AC ,垂足分別為 E 、F,求BE的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com