【題目】如圖,一次函數(shù)y=kx+3的圖象分別交x軸、y軸于點B、點C,與反比例函數(shù)y= 的圖象在第四象限的相交于點P,并且PA⊥y軸于點A,已知A (0,﹣6),且SCAP=18.
(1)求上述一次函數(shù)與反比例函數(shù)的表達式;
(2)設Q是一次函數(shù)y=kx+3圖象上的一點,且滿足△OCQ的面積是△BCO面積的2倍,求出點Q的坐標.

【答案】
(1)解:令一次函數(shù)y=kx+3中的x=0,則y=3,

即點C的坐標為(0,3),

∴AC=3﹣(﹣6)=9.

∵SCAP= ACAP=18,

∴AP=4,

∵點A的坐標為(0,﹣6),

∴點P的坐標為(4,﹣6).

∵點P在一次函數(shù)y=kx+3的圖象上,

∴﹣6=4k+3,解得:k=﹣ ;

∵點P在反比例函數(shù)y= 的圖象上,

∴﹣6= ,解得:n=﹣24.

∴一次函數(shù)的表達式為y=﹣ x+3,反比例函數(shù)的表達式為y=﹣


(2)解:令一次函數(shù)y=﹣ x+3中的y=0,則0=﹣ x+3,

解得:x=

即點B的坐標為( ,0).

設點Q的坐標為(m,﹣ m+3).

∵△OCQ的面積是△BCO面積的2倍,

∴|m|=2× ,解得:m=± ,

∴點Q的坐標為(﹣ ,9)或( ,﹣3)


【解析】(1)由一次函數(shù)表達式可得出點C的坐標,結合A點坐標以及三角形的面積公式可得出AP的長度,從而得出點P的坐標,由點P的坐標結合待定系數(shù)法即可求出一次函數(shù)及反比例函數(shù)的表達式;(2)設點Q的坐標為(m,﹣ m+3).由一次函數(shù)的表達式可找出點B的坐標,結合等底三角形面積的性質可得出關于m的一元一次方程,解方程即可得出m的值,將其代入點Q的坐標中即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線ACBD交于O,下列條件中不一定能判定這個四邊形是平行四邊形的是( 。

A. AB=DC,AD=BC B. ADBC,ABDC

C. OA=OC,OB=OD D. ABDC,AD=BC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市開展一項自行車旅游活動,線路需經(jīng)A、B、C、D四地,如圖,其中A、B、C三地在同一直線上,D地在A地北偏東30°方向,在C地北偏西45°方向,C地在A地北偏東75°方向.且BC=CD=20km,問沿上述線路從A地到D地的路程大約是多少?(最后結果保留整數(shù),參考數(shù)據(jù):sin15°≈0.25,cos15°≈0.97,tan15°≈0.27,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上有A、B、C、D四個整數(shù)點(即各點均表示整數(shù)),且2AB=BC=3CD,若A、D兩點表示的數(shù)分別為﹣56,且AC的中點為E,BD的中點為MBC之間距點B的距離為BC的點N,則該數(shù)軸的原點為( 。

A. E B. F C. M D. N

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O的半徑為1,AC是⊙O的直徑,過點C作⊙O的切線BC,E是BC的中點,AB交⊙O于D點.
(1)直接寫出ED和EC的數(shù)量關系:;
(2)DE是⊙O的切線嗎?若是,給出證明;若不是,說明理由;
(3)填空:當BC=時,四邊形AOED是平行四邊形,同時以點O、D、E、C為頂點的四邊形是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知某船于上午8時在A處觀測小島C在北偏東60°方向上,該船以每小時20海里的速度向東航行到B處,測得小島C在北偏東30°方向上,船以原來的速度繼續(xù)向東航行2小時,到達島C正南方點D處,船從AD一共航行了多少海里?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,點E,F(xiàn)分別在邊BC,AD上,且AF=CE.

(Ⅰ)如圖①,求證四邊形AECF是平行四邊形;

(Ⅱ)如圖②,若∠BAC=90°,且四邊形AECF是邊長為6的菱形,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在中俄“海上聯(lián)合﹣2014”反潛演習中,我軍艦A測得潛艇C的俯角為30°,位于軍艦A正上方1000米的反潛直升機B測得潛艇C的俯角為68°,試根據(jù)以上數(shù)據(jù)求出潛艇C離開海平面的下潛深度.(結果保留整數(shù),參考數(shù)據(jù):sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, 1.7)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了加強訓練學生的籃球和足球運球技能,準備購買一批籃球和足球用于訓練,已知1個籃球和2個足球共需116元;2個籃球和3個足球共需204

求購買1個籃球和1個足球各需多少元?

若學校準備購進籃球和足球共40個,并且總費用不超過1800元,則籃球最多可購買多少個?

查看答案和解析>>

同步練習冊答案