【題目】如圖,已知某船于上午8時在A處觀測小島C在北偏東60°方向上,該船以每小時20海里的速度向東航行到B處,測得小島C在北偏東30°方向上,船以原來的速度繼續(xù)向東航行2小時,到達島C正南方點D處,船從AD一共航行了多少海里?

【答案】船從AD一共走了120海里.

【解析】

根據(jù)直角三角形 30°角所對的直角邊等于斜邊的一半求出 BC 的長度,再根據(jù)兩個方位角證明 AB=BC,根據(jù)AD=AB+BD即可求解

由題意知∠CAD=30°,∠CBD=60°,

△BCD 中,∠CBD=60°,

∴∠BCD=30°,

∴BC=2BD,

船從BD走了2小時,船速為每小時20海里,

∴BD=40 海里,

∴BC=80海里,

∠CBD=60°,得∠ABC=120°,

∵∠CAD=30°,

∴∠ACB=30°,

∴AB=BC,

∴AB=80海里,

∵AD=AB+BD,

∴AD=80+40=120(海里).

因此船從AD一共走了120海里.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】由于被墨水污染,一道幾何題僅能見到如圖所示的圖形和文字:“如圖,已知:四邊形ABCD中,ADBC,∠D=67°,…”

(1)根據(jù)以上信息,你可以求出∠A、∠B、∠C中的哪個角?寫出求解的過程;

(2)若要求出其它的角,請你添上一個適當?shù)臈l件:      ,并寫出解題過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點D,E分別在AB,AC上,要使DE∥BC,必須具備哪些條件?盡可能把所有條件寫出來。

比如:

(1)如果∠DEC+∠ECB=180°,那么DE∥BC:

(2)_________________________________;

(3)_________________________________;

(4)_________________________________;

(5)__________________________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列定義一種關于n的運算:n是奇數(shù)時,結果為3n+5 ②n為偶數(shù)時結果是(其中k是使是奇數(shù)的正整數(shù)),并且運算重復進行.例如:取n=26,則…,若n=449,則第449次運算結果是(  )

A. 1 B. 2 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+3的圖象分別交x軸、y軸于點B、點C,與反比例函數(shù)y= 的圖象在第四象限的相交于點P,并且PA⊥y軸于點A,已知A (0,﹣6),且SCAP=18.
(1)求上述一次函數(shù)與反比例函數(shù)的表達式;
(2)設Q是一次函數(shù)y=kx+3圖象上的一點,且滿足△OCQ的面積是△BCO面積的2倍,求出點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,點P從點A出發(fā),以1cm/s的速度沿折線AC→CB→BA運動,最終回到點A,設點P的運動時間為x(s),線段AP的長度為y(cm),則能夠反映y與x之間函數(shù)關系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖矩形ABCD中,AD=5,AB=7,點E為DC上一個動點,把△ADE沿AE折疊,當點D的對應點D′落在∠ABC的角平分線上時,DE的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.
(1)求每臺A型電腦和B型電腦的銷售利潤;
(2)該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元. ①求y關于x的函數(shù)關系式;
②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?
(3)實際進貨時,廠家對A型電腦出廠價下調m(0<m<100)元,且限定商店最多購進A型電腦70臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息及(2)中條件,設計出使這100臺電腦銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各數(shù)中,最小的數(shù)是(
A.﹣2
B.﹣0.1
C.0
D.|﹣1|

查看答案和解析>>

同步練習冊答案