【題目】已知:ABC在坐標平面內(nèi),三個頂點的坐標分別為A0,3),B3,4),C2,2).(正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度)

1)作出ABC繞點A順時針方向旋轉(zhuǎn)90°后得到的A1B1C1,并寫出C1點的坐標 ;

2)作出ABC關(guān)于原點O成中心對稱的A2B2C2,并求出ABC的面積

【答案】1)(-1,-1),見解析;(2)見解析,.

【解析】

1)利用旋轉(zhuǎn)的性質(zhì)得出對應(yīng)點位置進而得出答案;
2)利用關(guān)于原點對稱點的性質(zhì)得出對應(yīng)點位置進而得出答案.ABC的面積可以用矩形的面積減去三個直角三角形的面積即可.

(1)如圖所示:A1B1C1,即為所求,

(2)如圖所示:A2B2C2,即為所求,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)實驗課上,王老師讓大家用矩形紙片折出菱形.小華同學(xué)的操作步驟是:

(1)如圖①,將矩形ABCD沿著對角線BD折疊;

(2)如圖②,將圖①中的△A’BF沿BF折疊得到△A’’BF;

(3)如圖③,將圖②中的△CDF沿DF折疊得到△C’DF;

(4)將圖③展開得到圖④,其中BD、BE、DF為折疊過程中產(chǎn)生的折痕.

試解答下列問題:

(1)證明圖④中的四邊形BEDF為菱形;

(2)在圖④中,若BC=8,CD=4,求菱形BEDF的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題一:如圖①,已知AC160km,甲,乙兩人分別從相距30kmA,B兩地同時出發(fā)到C地.若甲的速度為80km/h,乙的速度為60km/h,設(shè)乙行駛時間為xh),兩車之間距離為ykm).

1)當甲追上乙時,x   

2)請用x的代數(shù)式表示y

問題二:如圖②,若將上述線段AC彎曲后視作鐘表外圍的一部分,線段AB正好對應(yīng)鐘表上的弧AB1小時的間隔),易知∠AOB30°.

3)分針OD指向圓周上的點的速度為每分鐘轉(zhuǎn)動   km,時針OE指向圓周上的點的速度為每分鐘轉(zhuǎn)動   °;

4)若從200起計時,求幾分鐘后分針與時針第一次重合?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)x,y都是實數(shù),且y=++8,求5x+13y+6的值;

(2)已知△ABC的三邊長分別為ab,c,且滿足+b2-6b+9=0,求c的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果方程x2+px+q0的兩個根是x1,x2,那么x1+x2=﹣p,x1x2q,請根據(jù)以上結(jié)論,解決下列問題:

(1)p=﹣4,q3,求方程x2+px+q0的兩根.

(2)已知實數(shù)ab滿足a215a50,b215b50,求+的值;

(3)已知關(guān)于x的方程x2+mx+n0(n≠0),求出一個一元二次方程,使它的兩個根分別是已知方程兩根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題
(1)計算:(cos230°+sin230°)×tan60°
(2)解方程:x2﹣2 x﹣1=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,直線 , 相交于點 ,

1)若 ,求 的度數(shù);

2)若 ,求 的度數(shù);

3)在()的條件下,過點 ,請直接寫出 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請從以下兩個小題中任選一題作答,若多選,則按所選的第一題計分.
A.正五邊形的一個外角的度數(shù)是
B.比較大。2tan71° (填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,點軸上的動點,點軸上方的動點,連接,

1)如圖1,當點軸上,且滿足的角平分線與的角平分線交于點,請直接寫出的度數(shù);

2)如圖2,當點軸上,的角平分線與的角平分線交于點,點的延長線上,且滿足,求;

3)如圖3,當點在第一象限內(nèi),點內(nèi)一點,點,分別是線段,上一點,滿足:,,

以下結(jié)論:①;②平分;③平分;④

正確的是:________.(請?zhí)顚懻_結(jié)論序號,并選擇一個正確的結(jié)論證明,簡寫證明過程).

查看答案和解析>>

同步練習(xí)冊答案