【題目】如圖,在△ABC中,AC=BC,∠ ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DF⊥AC交AC的延長(zhǎng)線于F,連接CD,給出四個(gè)結(jié)論:①∠ADC=45°;②BD=AE;③AC+CE=AB;④AB—BC=2FC;其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【答案】D
【解析】試題分析:過(guò)點(diǎn)E作EQ⊥AB于Q,∵∠ACB=90°,AE平分∠CAB,∴CE=EQ,∵∠ACB=90°,AC=BC ∴∠CBA=∠CAB=45° ∵EQ⊥AB ∴∠EQA=∠EQB=90° 由勾股定理可得AC=AQ ∴∠QEB=45°=∠CBA
∴EQ=BQ ∴AB=AQ+BQ=AC+CE ∴③正確
作∠ACN=∠BCD,交AD于N,∵∠CAD=∠CAB=22.5°=∠BAD ∴∠ABD=67.5° ∴∠DBC=22.5°=∠CAD
∴∠DBC=∠CAD ∵AC=BC ∠ACN=∠DCB ∴△ACN≌△BCD ∴CN=CD AN=BD ∵∠ACN+∠NCE=90°
∴∠NCB+∠BCD=90° ∴∠CND=∠CDA=45° ∴∠ACN=22.5°=∠CAN ∴AN=CN ∴∠NCE=∠AEC=67.5°
∴CN=NE ∴CD-AN=EN=AE ∵AN=BD ∴BD=AE ∴①正確 ②正確.
過(guò)D作DH⊥AB于H,∵∠FCD=∠CAD+∠CDA=67.5° ∠DBA=90°-∠DAB=67.5° ∴∠FCD=∠DBA
∵AE平分∠CAB DF⊥AC,DH⊥AB,∴DF=DH ∴△DCF≌△DBH ∴BH=CF 由勾股定理可得:AF=AH
∴,∴AC+AB=2AF AC+AB=2AC+2CF
AB-AC=2CF ∵AC=CB ∴AB-CB=2CF ∴④正確.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤被3等分,指針落在每個(gè)扇形內(nèi)的機(jī)會(huì)均等.
(1)現(xiàn)隨機(jī)轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,停止后,指針指向2的概率為 .
(2)小明和小華利用這個(gè)轉(zhuǎn)盤做游戲,若采用下列游戲規(guī)則,你認(rèn)為對(duì)雙方公平嗎?請(qǐng)用列表或畫樹(shù)狀圖的方法說(shuō)明理由.
游戲規(guī)則:隨機(jī)轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,停止后,指針各指向一個(gè)數(shù)字,若兩數(shù)之積為偶數(shù),則小明勝;否則小華勝.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,將兩塊全等的直角三角形紙片△ABC和△DEF疊放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,頂點(diǎn)D與邊AB的中點(diǎn)重合.
(1)若DE經(jīng)過(guò)點(diǎn)C,DF交AC于點(diǎn)G,求重疊部分(△DCG)的面積;
(2)合作交流:“希望”小組受問(wèn)題(1)的啟發(fā),將△DEF繞點(diǎn)D旋轉(zhuǎn),使DE⊥AB交AC于點(diǎn)H,DF交AC于點(diǎn)G,如圖2,求重疊部分(△DGH)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三角形兩邊長(zhǎng)分別為4和6,第三邊是方程x2﹣13x+36=0的根,則三角形的周長(zhǎng)為( 。
A. 14B. 18C. 19D. 14或19
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)據(jù)1,2,3,a的平均數(shù)是3,數(shù)據(jù)4,5,a,b的眾數(shù)是5,則a+b= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC=5,BC=6,以AC為一邊作正方形ACDE,過(guò)點(diǎn)D作DF⊥BC交直線BC于點(diǎn)F,連接AF,請(qǐng)你畫出圖形,直接寫出AF的長(zhǎng),并畫出體現(xiàn)解法的輔助線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將等邊△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)120°得到△EDC,連接AD,BD.則下列結(jié)論:
①AC=AD;②BD⊥AC;③四邊形ACED是菱形.
其中正確的個(gè)數(shù)是( )
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖形中,不是相似三角形的是( )
A.任意兩個(gè)等邊三角形
B.有一個(gè)角是45°的兩個(gè)直角三角形
C.有一個(gè)角是92°的兩個(gè)等腰三角形
D.有一個(gè)角是45°的兩個(gè)等腰三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在方格紙中,△ABC的三個(gè)頂點(diǎn)及D,E,F,G,H五個(gè)點(diǎn)分別位于小正方形的頂點(diǎn)上.
(1)現(xiàn)以D,E,F,G,H中的三個(gè)點(diǎn)為頂點(diǎn)畫三角形,在所畫的三角形中與△ABC不全等但面積相等的三角形是 (只需要填一個(gè)三角形);
(2)先從D,E兩個(gè)點(diǎn)中任意取一個(gè)點(diǎn),再?gòu)?/span>F,G,H三個(gè)點(diǎn)中任意取兩個(gè)不同的點(diǎn),以所取的這三個(gè)點(diǎn)為頂點(diǎn)畫三角形,畫樹(shù)狀圖求所畫三角形與△ABC面積相等的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com