【題目】校車安全是近幾年社會(huì)關(guān)注的熱門話題,其中超載和超速行駛是校車事故的主要原因.小亮和同學(xué)嘗試用自己所學(xué)的三角函數(shù)知識(shí)檢測(cè)校車是否超速,如下圖,觀測(cè)點(diǎn)設(shè)在到白田路的距離為100米的點(diǎn)P處.這時(shí),一輛校車由西向東勻速行駛,測(cè)得此校車從A處行駛到B處所用的時(shí)間為4秒,且∠APO=60°,∠BPO =45°.
(1)求A、B之間的路程;(參考數(shù)據(jù): , )
(2)請(qǐng)判斷此校車是否超過了白田路每小時(shí)60千米的限制速度?
【答案】(1)100()米;(2)超速.
【解析】試題分析:(1)分別在Rt△APO,Rt△BOP中,求得AO、BO的長(zhǎng),從而求得AB的長(zhǎng).已知時(shí)間則可以根據(jù)路程公式求得其速度.
(2)將限速與其速度進(jìn)行比較,若大于限速則超速,否則沒有超速.
試題解析:(1)在Rt△BOP中,∠BOP=90°,
∵∠BPO=45°,OP=100,
∴OB=OP=100.
在Rt△AOP中,∠AOP=90°,
∵∠APO=60°,
∴AO=OPtan∠APO.
∴AO=100,
∴AB=100(1)(米);
(2)∵此車的速度=100(1)4=25(1)≈25×0.73=18.25米/秒
60千米/小時(shí)=≈16.67米/秒,
18.25米/秒>16.67米/秒,
∴此車超過了白田路每小時(shí)60千米的限制速度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)要求完成下列題目
(1)圖中有______塊小正方體;
(2)請(qǐng)?jiān)谙旅娣礁窦堉蟹謩e畫出它的主視圖、左視圖和俯視圖;
(3)用小正方體搭一幾何體,使得它的俯視圖和主視圖與你在上圖方格中所畫的圖一致,若這樣的幾何體最少要個(gè)小正方體,最多要個(gè)小正方體,則的值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩塊等腰直角三角形紙片AOB和COD按圖1所示放置,直角頂點(diǎn)重合在點(diǎn)O處,AB=25,CD=17.保持紙片AOB不動(dòng),將紙片COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α(0°<α<90°)角度,如圖2所示.
(1)利用圖2證明AC=BD且AC⊥BD;
(2)當(dāng)BD與CD在同一直線上(如圖3)時(shí),求AC的長(zhǎng)和α的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC與△A1B1C1是位似圖形.
(1)在網(wǎng)格上建立平面直角坐標(biāo)系,使得點(diǎn)A的坐標(biāo)為(﹣6,﹣1),點(diǎn)C1的坐標(biāo)為(﹣3,2),則點(diǎn)B的坐標(biāo)為 ;
(2)以點(diǎn)A為位似中心,在網(wǎng)格圖中作△AB2C2,使△AB2C2和△ABC位似,且位似比為1:2;
(3)在圖上標(biāo)出△ABC與△A1B1C1的位似中心P,并寫出點(diǎn)P的坐標(biāo)為 ,計(jì)算四邊形ABCP的周長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,AE⊥BC于點(diǎn)E,F為AB邊上一點(diǎn),連接CF,交AE于點(diǎn)G,CF=CB=AE.
(1)若AB,BC,求CE的長(zhǎng);
(2)求證:BE=CG﹣AG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)N(0,6),點(diǎn)M在x軸負(fù)半軸上,ON=3OM.A為線段MN上一點(diǎn),AB⊥x軸,垂足為點(diǎn)B,AC⊥y軸,垂足為點(diǎn)C.
(1)寫出點(diǎn)M的坐標(biāo);
(2)求直線MN的表達(dá)式;
(3)若點(diǎn)A的橫坐標(biāo)為-1,求矩形ABOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1 ,一次函數(shù) (k,b為常數(shù),k≠0)的圖象與反比例函數(shù)(m為常數(shù),m≠0)的圖象相交于點(diǎn)M(1,4)和點(diǎn)N(4,n).
(1)填空:①反比例函數(shù)的解析式是 ; ②根據(jù)圖象寫出時(shí)自變量x的取值范圍是 ;
(2) 若將直線MN向下平移a(a>0)個(gè)單位長(zhǎng)度后與反比例函數(shù)的圖象有且只有一個(gè)公共點(diǎn),求a的值;
(3) 如圖2,函數(shù)的圖象(x>0)上有一個(gè)動(dòng)點(diǎn)C,若先將直線MN平移使它過點(diǎn)C,再繞點(diǎn)C旋轉(zhuǎn)得到直線PQ,PQ交軸于點(diǎn)A,交軸點(diǎn)B,若BC=2CA, 求OA·OB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,對(duì)于平面上小于等于90°的∠MON,我們給出如下定義:若點(diǎn)P在∠MON的內(nèi)部或邊上,作PE⊥OM于點(diǎn)E,PF⊥ON于點(diǎn)F,則將PE+PF稱為點(diǎn)P與∠MON的“點(diǎn)角距”,記作d(∠MON,P).如圖2,在平面直角坐標(biāo)系xOy中,x、y正半軸所組成的角為∠xOy.
(1)已知點(diǎn)A(5,0)、點(diǎn)B(3,2),則d(∠xOy,A)= ,d(∠xOy,B)= .
(2)若點(diǎn)P為∠xOy內(nèi)部或邊上的動(dòng)點(diǎn),且滿足d(∠xOy,P)=5,畫出點(diǎn)P運(yùn)動(dòng)所形成的圖形.
(3)如圖3與圖4,在平面直角坐標(biāo)系xOy中,射線OT的函數(shù)關(guān)系式為y=x(x≥0).
①在圖3中,點(diǎn)C的坐標(biāo)為(4,1),試求d(∠xOT,C)的值;
②在圖4中,拋物線y=-x2+2x+經(jīng)過A(5,0)與點(diǎn)D(3,4)兩點(diǎn),點(diǎn)Q是A,D兩點(diǎn)之間的拋物線上的動(dòng)點(diǎn)(點(diǎn)Q可與A,D兩點(diǎn)重合),求當(dāng)d(∠xOT,Q)取最大值時(shí)點(diǎn)Q 的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com