【題目】如圖,拋物線經(jīng)過原點(diǎn)O(0,0),點(diǎn)A(1,1),點(diǎn)B(,0)

(1)求拋物線解析式;

(2)連接OA,過點(diǎn)AACOA交拋物線于C,連接OC,求AOC的面積;

(3)點(diǎn)My軸右側(cè)拋物線上一動(dòng)點(diǎn),連接OM,過點(diǎn)MMNOMx軸于點(diǎn)N.問:是否存在點(diǎn)M,使以點(diǎn)O,M,N為頂點(diǎn)的三角形與(2)中的AOC相似,若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

【答案】(1);(2)4;(3),﹣54)或(,)或(,﹣

【解析】

(1)設(shè)交點(diǎn)式y=ax(x-),然后把A點(diǎn)坐標(biāo)代入求出a即可得到拋物線解析式;

(2)延長CAy軸于D,如圖1,易得OA=,DOA=45°,則可判斷AOD為等腰直角三角形,所以OD=OA=2,則D(0,2),利用待定系數(shù)法求出直線AD的解析式為y=-x+2,再解方程組,得C(5,-3),然后利用三角形面積公式,利用SAOC=SCOD-SAOD進(jìn)行計(jì)算;

(3)如圖2,作MHx軸于H,AC=4,OA=,設(shè)M(x,-x2+x)(x>0),根據(jù)三角形相似的判定,由于∠OHM=OAC,則當(dāng)時(shí),OHM∽△OAC,即;當(dāng)時(shí),OHM∽△CAO,即,則分別解關(guān)于x的絕對(duì)值方程可得到對(duì)應(yīng)M點(diǎn)的坐標(biāo),由于OMH∽△ONM,所以求得的M點(diǎn)能以點(diǎn)O,M,N為頂點(diǎn)的三角形與(2)中的AOC相似.

1)設(shè)拋物線解析式為y=ax(x-),

A(1,1)代入得a1(1-)=1,解得a=-,

∴拋物線解析式為y=-x(x-),

y=-x2+x;

(2)延長CAy軸于D,如圖1,

A(1,1),

OA=,DOA=45°,

∴△AOD為等腰直角三角形,

OAAC,

OD=OA=2,

D(0,2),

易得直線AD的解析式為y=-x+2,

解方程組,則C(5,-3),

SAOC=SCOD-SAOD=×2×5-×2×1=4;

(3)存在.如圖2,

MHx軸于H,AC=,OA=,

設(shè)M(x,-x2+x)(x>0),

∵∠OHM=OAC,

∴當(dāng)時(shí),OHM∽△OAC,即

解方程-x2+x =4xx1=0(舍去),x2=-(舍去),

解方程-x2+x =-4xx1=0(舍去),x2=,此時(shí)M點(diǎn)坐標(biāo)為(,-54);

當(dāng)時(shí),OHM∽△CAO,即,

解方程-x2+x=xx1=0(舍去),x2=,此時(shí)M點(diǎn)的坐標(biāo)為(,),

解方程-x2+x=-xx1=0(舍去),x2=,此時(shí)M點(diǎn)坐標(biāo)為(,-);

MNOM,

∴∠OMN=90°,

∴∠MON=HOM,

∴△OMH∽△ONM,

∴當(dāng)M點(diǎn)的坐標(biāo)為(,-54)或(,)或(,-)時(shí),以點(diǎn)O,M,N為頂點(diǎn)的三角形與(2)中的AOC相似.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(),在正方形中,上一點(diǎn),延長線上一點(diǎn),且

(1)求證:;

(2)在如圖()中,若上,且,則成立嗎?

證明你的結(jié)論.(3)運(yùn)用(1)(2)解答中積累的經(jīng)驗(yàn)和知識(shí),完成下題:

如圖()四邊形中,(),,,點(diǎn)上一點(diǎn),且,求的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C=90°,AC=2,BC=5,點(diǎn)DBC邊上一點(diǎn)且CD=1,點(diǎn)P是線段DB上一動(dòng)點(diǎn),連接AP,以AP為斜邊在AP的下方作等腰RtAOP.當(dāng)P從點(diǎn)D出發(fā)運(yùn)動(dòng)至點(diǎn)B停止時(shí),點(diǎn)O的運(yùn)動(dòng)路徑長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形AOBC中,OB=4,OA=3.分別以OB,OA所在直線為x軸,y軸,建立如圖1所示的平面直角坐標(biāo)系.FBC邊上一個(gè)動(dòng)點(diǎn)(不與B,C重合),過點(diǎn)F的反比例函數(shù)y=(k>0)的圖象與邊AC交于點(diǎn)E.

(1)當(dāng)點(diǎn)F運(yùn)動(dòng)到邊BC的中點(diǎn)時(shí),求點(diǎn)E的坐標(biāo);

(2)連接EF,求∠EFC的正切值;

(3)如圖2,將CEF沿EF折疊,點(diǎn)C恰好落在邊OB上的點(diǎn)G處,求此時(shí)反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=AC,AD=AE,,若要得到△ABD≌△ACE,必須添加一個(gè)條件,則下列所添?xiàng)l件不恰當(dāng)?shù)氖?( ).

A. BD=CEB. ∠ABD=∠ACEC. ∠BAD=∠CAED. ∠BAC=∠DAE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ACB90°ACBC,直線l經(jīng)過點(diǎn)C,BDl,AEl,,垂足分別為D、E

1)當(dāng)AB在直線l同側(cè)時(shí),如圖1

證明:AECCDB

②若AE=3,BD=4,計(jì)算△ACB的面積.(提示:間接求)

(2)當(dāng)A. B在直線l兩側(cè)時(shí),如圖2,若AE=3,BD=4,連接AD,BE直接寫出梯形ADBE的面積___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB=AC,AD=AE,∠BAC=DAE,∠1=25°,∠2=30°

1)求證△ABD≌△ACE

2)求∠3度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:將矩形紙片ABCD折疊,使點(diǎn)A與點(diǎn)C重合(點(diǎn)D與D'為對(duì)應(yīng)點(diǎn)),折痕為EF,連接AF.

(1)如圖1,求證:四邊形AECF為菱形;

(2)如圖2,若FC=2DF,連接AC交EF于點(diǎn)O,連接DO、D'O,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖2中所有等邊三角形.

(圖1) (圖2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列各題;

14a34﹣(3a62

2)﹣6xyx2y

3)(9x2y6xy2)÷3xy

4)(a+2b)(a2b)﹣(a+b2

5)(﹣120+22

6201822017×2019(用公式)

查看答案和解析>>

同步練習(xí)冊(cè)答案