【題目】在某地,人們發(fā)現(xiàn)在一定溫度下某種蟋蟀叫的次數(shù)與溫度之間有如下的竟是關(guān)系:

1)在這個(gè)變化過(guò)程中,自變量是 ,因變量是

2)在當(dāng)?shù)販囟?/span>每增加,這種蟋蟀叫的次數(shù)是怎樣變化的?

3)這種蟋蟀叫的次數(shù)(次)與當(dāng)?shù)販囟?/span>之間的關(guān)系為 ;

4)當(dāng)這種蟋蟀叫的次數(shù)時(shí),求當(dāng)時(shí)該地的溫度.

【答案】(1)當(dāng)?shù)販囟;蟋?/span>1分鐘的叫次數(shù);(2)當(dāng)?shù)販囟?/span>x每增加1℃,這種蟋蟀1分鐘叫的次數(shù)y增加7次;(3)y7x21;(4)18.

【解析】

根據(jù)表格找出規(guī)律即可求解.

(1)自變量是當(dāng)?shù)販囟,因變量是蟋?/span>1分鐘叫的次數(shù).

(2)當(dāng)?shù)販囟?/span>x每增加1℃,這種蟋蟀1分鐘叫的次數(shù)y增加7.

(3)這種蟋蟀1分鐘叫的次數(shù)y()與當(dāng)?shù)販囟?/span>x()之間的關(guān)系式為:y7x21

(4)當(dāng)y105時(shí),解得x18,則當(dāng)時(shí)該地的溫度為18.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一塊長(zhǎng)為22 m寬為17 m的矩形地面上,要修建同樣寬的兩條互相垂直的道路(兩條道路各與矩形的一條邊平行),剩余部分種上草坪使草坪面積為300 m2.若設(shè)道路寬為x m根據(jù)題意可列出方程為______________________________

【答案】(22-x)(17-x)=300(或x2-39x+74=0)

【解析】試題分析:把所修的兩條道路分別平移到矩形的最上邊和最左邊,則剩下的草坪是一個(gè)長(zhǎng)方形,根據(jù)長(zhǎng)方形的面積公式列方程.設(shè)道路的寬應(yīng)為x米,由題意有(22﹣x)(17﹣x=300,故答案為:(22﹣x)(17﹣x=300

考點(diǎn):由實(shí)際問(wèn)題抽象出一元二次方程.

型】填空
結(jié)束】
17

【題目】x=1是關(guān)于x的一元二次方程x2+mx﹣5=0的一個(gè)根,則此方程的另一個(gè)根是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)的坐標(biāo)為,將點(diǎn)向右平移個(gè)單位得到點(diǎn),其中關(guān)于的一元一次不等式的解集為,過(guò)點(diǎn)軸于.

(1)兩點(diǎn)坐標(biāo)及四邊形的面積;

(2)如圖2,點(diǎn)點(diǎn)以1個(gè)單位/秒的速度在軸上向上運(yùn)動(dòng),點(diǎn)點(diǎn)以2個(gè)單位/秒的速度在軸上向左運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為(),是否存在一段時(shí)間使得,若存在,求出的取值范圍;若不存在,說(shuō)明理由;

(3)(2)的條件下,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示8×7的正方形網(wǎng)格中,A2,0),B3,2),C4,2),請(qǐng)按要求解答下列問(wèn)題:

1)將△ABO向右平移4個(gè)單位長(zhǎng)度得到△A1B1O1,請(qǐng)畫(huà)出△A1B1O1并寫(xiě)出點(diǎn)A1的坐標(biāo);

2)將△ABO繞點(diǎn)C4,2)順時(shí)針旋轉(zhuǎn)90°得到△A2B2O2,請(qǐng)畫(huà)出△A2B2O2并寫(xiě)出點(diǎn)A2的坐標(biāo);

3)將△A1B1O1繞點(diǎn)Q旋轉(zhuǎn)90°可以和△A2B2O2完全重合,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)圓錐的高為3 cm,側(cè)面展開(kāi)圖是半圓,

求:(1)圓錐母線(xiàn)與底面半徑的比;

(2)錐角的大小;

(3)圓錐的全面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,K是正方形ABCD內(nèi)一點(diǎn),以AK為一邊作正方形AKLM,使L,M,DAK的同旁,連接BKDM,試用旋轉(zhuǎn)的思想說(shuō)明線(xiàn)段BKDM的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,完成相應(yīng)的任務(wù);全等四邊形根據(jù)全等圖形的定又可知:四條邊分別相等、四個(gè)角也分別相等的兩個(gè)四邊形全等。在“探索三角形全等的條件”時(shí),我們把兩個(gè)三角形中“一條邊和等”或“一個(gè)角相等”稱(chēng)為一個(gè)條件.智慧小組的同學(xué)類(lèi)比“探索三角形全等條件”的方法探索“四邊形全等的條件”,進(jìn)行了如下思考:如圖1,四邊形和四邊形中,連接對(duì)角線(xiàn),這樣兩個(gè)四邊形全等的問(wèn)題就轉(zhuǎn)化為“”與“”的問(wèn)題。若先給定“”的條件,只要再增加個(gè)條件使“”即可推出兩個(gè)四邊形中“四條邊分別相等、四個(gè)角也分別和等”,從而說(shuō)明兩個(gè)四邊形全等。

按照智慧小組的思路,小明對(duì)圖中的四邊形與四邊形先給出和下條件: ,,小亮在此基礎(chǔ)上又給出“”兩個(gè)條件.他們認(rèn)為滿(mǎn)足這五個(gè)條件能得到“四邊形四邊形”.

1)請(qǐng)根據(jù)小明和小亮給出的條件,說(shuō)明“四邊形四邊形”的理由;

2)請(qǐng)從下面兩題中任選一題作答,我選擇 題.

在材料中“小明所給條件”的基礎(chǔ)上,小穎又給出兩個(gè)條件“”.滿(mǎn)足這五個(gè)條件 (填“能”或“不能”)得到四邊形四邊形

在材料中“小明所給條件的基礎(chǔ)上”,再添加兩個(gè)關(guān)于原四邊形的條件(要求:不同于小亮的條件),使四邊形四邊形,你添加的條件是① ,② .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】人壽保險(xiǎn)公司的一張關(guān)于某地區(qū)的生命表的部分摘錄如下:

年齡

活到該年齡的人數(shù)

在該年齡的死亡人數(shù)

40

80500

892

50

78009

951

60

69891

1200

70

45502

2119

80

16078

2001

根據(jù)上表解下列各題:

1某人今年50歲,他當(dāng)年去世的概率是多少?他活到80歲的概率是多少?

(保留三個(gè)有效數(shù)字)

2如果有20000個(gè)50歲的人參加人壽保險(xiǎn),當(dāng)年死亡的人均賠償金為10萬(wàn)元,預(yù)計(jì)保險(xiǎn)公司需付賠償?shù)目傤~為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABC中,ABC=90°,以AB上的點(diǎn)O為圓心,OB的長(zhǎng)為半徑的圓與AB交于點(diǎn)E,與AC切于點(diǎn)D.

1求證:BC=CD;

2求證:ADE=ABD;

查看答案和解析>>

同步練習(xí)冊(cè)答案