【題目】如果一個三角形能被一條線段割成兩個等腰三角形,那么稱這條線段為這個三角形的特異線,稱這個三角形為特異三角形.
(1)如圖1,是等腰銳角三角形,,若的角平分線交于點,且是的一條特異線,則 度.
(2)如圖2,中,,線段的垂直平分線交于點,交于點,求證:是的一條特異線;
(3)如圖3,若是特異三角形,,為鈍角,不寫過程,直接寫出所有可能的的度數(shù).
【答案】(1)72;(2)證明見解析;(3)∠B度數(shù)為:135°、112.5°或140°.
【解析】
(1)根據(jù)等腰三角形性質(zhì)得出∠C=∠ABC=∠BDC=2∠A,據(jù)此進一步利用三角形內(nèi)角和定理列出方程求解即可;
(2)通過證明△ABE與△AEC為等腰三角形求解即可;
(3)根據(jù)題意分當BD為特異線、AD為特異線以及CD為特異線三種情況分類討論即可.
(1)∵AB=AC,
∴∠ABC=∠C,
∵BD平分∠ABC,
∴∠ABD=∠CBD=∠ABC,
∵BD是△ABC的一條特異線,
∴△ABD與△BCD為等腰三角形,
∴AD=BD=BC,
∴∠A=∠ABD,∠C=∠BDC,
∴∠ABC=∠C=∠BDC,
∵∠BDC=∠A+∠ABD=2∠A,
設(shè)∠A=x,則∠C=∠ABC=∠BDC=2x,
在△ABC中,∠A+∠ABC+∠C=180°,
即:x+2x+2x=180°,
∴x=36°,
∴∠BDC=72°,
故答案為:72;
(2)∵DE是線段AC的垂直平分線,
∴EA=EC,
∴△EAC為等腰三角形,
∴∠EAC=∠C,
∴∠AEB=∠EAC+∠C=2∠C,
∵∠B=2∠C,
∴∠AEB=∠B,
∴△EAB為等腰三角形,
∴AE是△ABC的一條特異線;
(3)
如圖3,當BD是特異線時,
如果AB=BD=DC,則∠ABC=∠ABD+∠DBC=120°+15°=135°;
如果AD=AC,DB=DC,則∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°;
如果AD=DB,DC=DB,則∠ABC=∠ABD+∠DBC=30°+60°=90°,不符合題意,舍去;
如圖4,當AD是特異線時,AB=BD,AD=DC,
則:∠ABC=180°20°20°=140°;
當CD為特異線時,不符合題意;
綜上所述,∠B度數(shù)為:135°、112.5°或140°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘輪船以18海里/時的速度由西向東航行,在A處測得小島C在北偏東75°方向上,兩小時后,輪船在B處測得小島C在北偏東60°方向上,在小島周圍15海里處有暗礁,若輪船仍然按18海里/時的速度向東航行,請問是否有觸礁危險?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王勇和李明兩位同學(xué)在學(xué)習(xí)“概率”時,做投擲骰子(質(zhì)地均勻的正方體)實驗,他們共做了30次實驗,實驗的結(jié)果如下:
朝上的點數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)的次數(shù) | 2 | 5 | 6 | 4 | 10 | 3 |
(1)分別計算這30次實驗中“3點朝上”的頻率和“5點朝上”的頻率;
(2)王勇說:“根據(jù)以上實驗可以得出結(jié)論:由于5點朝上的頻率最大,所以一次實驗中出現(xiàn)5點朝上的概率最大”;李明說:“如果投擲300次,那么出現(xiàn)6點朝上的次數(shù)正好是30次”.試分別說明王勇和李明的說法正確嗎?并簡述理由;
(3)現(xiàn)王勇和李明各投擲一枚骰子,請用列表或畫樹狀圖的方法求出兩枚骰子朝上的點數(shù)之和為3的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BE平分∠ABC交AC于點E,過點E作ED∥BC交AB于點D.
(1)求證:AEBC=BDAC;
(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E是矩形紙片的邊BC上的一動點,沿直線AE折疊紙片,點B落在了點B′位置,連結(jié)CB′.已知AB=3,BC=6,則當線段CB′最小時BE的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分別以AB、BC、DC為邊向外作正方形,它們的面積分別為S1、S2、S3.若S2=48,S3=9,則S1的值為( 。
A. 18 B. 12 C. 9 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形ABC(頂點是網(wǎng)格線的交點的三角形)的頂點A,C的坐標分別為(﹣4,5),(﹣1,3).
(1)請作出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)△A1B1C1的面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形都是由同樣大小的正方形按照一定規(guī)律所組成的,其中第①個圖形中一個有2個正方形,第②個圖形中一共有8個正方形,第③個圖形中一共有16個正方形,…,按此規(guī)律,第⑦個圖形中正方形的個數(shù)為( )
A. 56 B. 65 C. 68 D. 71
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com