【題目】《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,作者是我國明代數(shù)學(xué)家程大位.在《算法統(tǒng)宗》中記載:以繩測(cè)井,若將繩三折測(cè)之,繩多4尺,若將繩四折測(cè)之,繩多1尺,繩長(zhǎng)井深各幾何?

譯文:用繩子測(cè)水井深度,如果將繩子折成三等份,井外余繩4尺;如果將繩子折成四等份,井外余繩1尺.問繩長(zhǎng)、井深各是多少尺?

設(shè)井深為x尺,根據(jù)題意列方程,正確的是( 。

A. 3(x+4)=4(x+1) B. 3x+4=4x+1

C. 3(x﹣4)=4(x﹣1) D.

【答案】A

【解析】

用代數(shù)式表示井深即可得方程.此題中的等量關(guān)系有:①將繩三折測(cè)之,繩多四尺;②繩四折測(cè)之,繩多一尺.

解:根據(jù)將繩三折測(cè)之,繩多四尺,則繩長(zhǎng)為:3(x+4),根據(jù)繩四折測(cè)之,繩多一尺,則繩長(zhǎng)為:4(x+1),

3(x+4)=4(x+1).

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的頂點(diǎn)A、C坐標(biāo)分別是(8,0),(0,4),反比例函數(shù)y= (x>0)的圖象過對(duì)角線的交點(diǎn)P并且與AB、BC分別交于D、E兩點(diǎn),連接OD、OE、DE,則△ODE的面積為(
A.14
B.12
C.15
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地上網(wǎng)有兩種收費(fèi)方式,用戶可以任選其一:

(A)記時(shí)制:2.8/小時(shí),

(B)包月制:16/月.此外,每一種上網(wǎng)方式都加收通訊費(fèi)1.2/小時(shí).

(1)某用戶上網(wǎng)20小時(shí),選用哪種上網(wǎng)方式比較合算?

(2)當(dāng)上網(wǎng)時(shí)間在什么小時(shí)時(shí),兩種上網(wǎng)費(fèi)用一樣多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段CD在線段AB上,且CD=2,若線段AB的長(zhǎng)度是一個(gè)正整數(shù),則圖中以A,B,C,D這四點(diǎn)中任意兩點(diǎn)為端點(diǎn)的所有線段長(zhǎng)度之和可能是( )

A.28 B.29 C.30 D.31

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,DOE=90°.

(1)請(qǐng)你數(shù)一數(shù),圖中有多少個(gè)小于平角的角;

(2)求出∠BOD的度數(shù);

(3)請(qǐng)通過計(jì)算說明OE是否平分∠BOC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)新建了一棟四層的教學(xué)樓,每層樓有10間教室,進(jìn)出這棟教學(xué)樓共有4個(gè)門,其中兩個(gè)正門大小相同,兩個(gè)側(cè)門大小也相同.安全檢查中,對(duì)4個(gè)門進(jìn)行了測(cè)試,當(dāng)同時(shí)開啟一個(gè)正門和兩個(gè)側(cè)門時(shí),2分鐘內(nèi)可以通過560名學(xué)生;當(dāng)同時(shí)開啟一個(gè)正門和一個(gè)側(cè)門時(shí),4分鐘內(nèi)可以通過800名學(xué)生.
(1)求平均每分鐘一個(gè)正門和一個(gè)側(cè)門各可以通過多少名學(xué)生?
(2)檢查中發(fā)現(xiàn),出現(xiàn)緊急情況時(shí),因?qū)W生擁擠,出門的效率將降低20%,安全檢查規(guī)定:在緊急情況下全樓的學(xué)生應(yīng)在5分鐘內(nèi)通過這4個(gè)門安全撤離,假設(shè)這棟教學(xué)大樓每間教室最多有45名學(xué)生,問:該教學(xué)樓建造的這4個(gè)門是否符合安全規(guī)定?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:

(1)2(100.5y)=﹣(1.5y+2)

(2)(x5)3(x5)

(3)1

(4)x(x9)[x+(x9)]

(5) -=0.5x+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(+2)(2)1a(a0)、(+1)(1)b1(b0)……兩個(gè)含有二次根式的代數(shù)式相乘,積不含有二次根式,我們稱這兩個(gè)代數(shù)式互為有理化因式.例如, +11,2+323等都是互為有理化因式.進(jìn)行二次根式計(jì)算時(shí),利用有理化因式,可以化去分母中的根號(hào).請(qǐng)完成下列問題:

(1)化簡(jiǎn):;

(2)計(jì)算:

(3)比較的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+2k+1x+k2+1=0有兩個(gè)不等實(shí)根x1、x2

1)求實(shí)數(shù)k的取值范圍

2)若方程兩實(shí)根x1x2滿足x1+x2=﹣x1x2,k的值

查看答案和解析>>

同步練習(xí)冊(cè)答案